B=\(\frac{1}{3}+\frac{1}{6}\cdot\left(1+2\right)+\frac{1}{9}\cdot\left(1+2+3\right)+...+\frac{1}{6045}\cdot\left(1+2+3+...+2015\right)\)
TÍNH
\(C=\left(1+\frac{2}{3}\right)\cdot\left(1+\frac{2}{5}\right)\cdot\left(1+\frac{2}{7}\right)\cdot\cdot\cdot\cdot\cdot\left(1+\frac{2}{2015}\right)\cdot\left(1+\frac{2}{2017}\right)\)
\(D=\left(1-\frac{1}{3}\right)\cdot\left(1-\frac{1}{6}\right)\cdot\left(1-\frac{1}{10}\right)\cdot\left(1-\frac{1}{15}\right)\cdot\cdot\cdot\cdot\left(1-\frac{1}{780}\right)\)
\(C=\frac{5}{2}\cdot\frac{7}{5}\cdot\frac{9}{7}\cdot\frac{11}{9}\cdot...\cdot\frac{2017}{2015}\cdot\frac{2019}{2017}=\frac{2019}{2}\)
\(D=\left(1-\frac{1}{\frac{2\cdot3}{2}}\right)\cdot\left(1-\frac{1}{\frac{3\cdot4}{2}}\right)\cdot\left(1-\frac{1}{\frac{4\cdot5}{2}}\right)\cdot\left(1-\frac{1}{\frac{5\cdot6}{2}}\right)\cdot...\cdot\left(1-\frac{1}{\frac{39\cdot40}{2}}\right)\)
\(=\left(1-\frac{2}{2\cdot3}\right)\cdot\left(1-\frac{2}{3\cdot4}\right)\cdot\left(1-\frac{2}{4\cdot5}\right)\cdot\left(1-\frac{2}{5\cdot6}\right)\cdot...\cdot\left(1-\frac{2}{39\cdot40}\right)\cdot\)
Nhận xét: \(1-\frac{2}{n\left(n+1\right)}=\frac{n\left(n+1\right)-2}{n\left(n+1\right)}=\frac{n^2+n-2}{n\left(n+1\right)}=\frac{\left(n+2\right)\left(n-1\right)}{n\left(n+1\right)}\)nên:
\(D=\frac{4\cdot1}{2\cdot3}\cdot\frac{5\cdot2}{3\cdot4}\cdot\frac{6\cdot3}{4\cdot5}\cdot\frac{7\cdot4}{5\cdot6}\cdot\frac{8\cdot5}{6\cdot7}\cdot...\cdot\frac{41\cdot38}{39\cdot40}=\)
\(D=\frac{4\cdot5\cdot6\cdot7\cdot...\cdot41\times1\cdot2\cdot3\cdot4\cdot...\cdot38}{2\cdot3\cdot4\cdot5\cdot...\cdot39\times3\cdot4\cdot5\cdot6\cdot..\cdot40}=\frac{1}{39}\cdot\frac{41}{3}=\frac{41}{117}\)
tính nhanh
a, \(\frac{-2}{5}\cdot\left(\frac{5}{17}-\frac{9}{15}\right)-\frac{2}{5}\cdot\frac{2}{17}+\frac{-2}{5}\)
b, \(\frac{1}{5}\cdot\left(\frac{4}{13}-\frac{9}{11}\right)+\frac{1}{3}\left(\frac{9}{13}-\frac{4}{22}\right)\)
c, \(\left(\frac{1}{2}+1\right)\cdot\left(\frac{1}{3}+1\right)\cdot\left(\frac{1}{4}+1\right)\cdot...\cdot\left(\frac{1}{99}+1\right)\)
d, \(\left(1-\frac{1}{2}\right)\cdot\left(1-\frac{1}{3}\right)\cdot\left(1-\frac{1}{4}\right)\cdot...\cdot\left(1-\frac{1}{100}\right)\)
Mk ko biết lm nhưng cứ k thoải mái nha
SORRY
A=\(\left(1-\frac{1}{1+2}\right)\cdot\left(1-\frac{1}{1+2+3}\right)\cdot\cdot\cdot\left(1-\frac{1}{1+2+3+\cdot\cdot\cdot+2015}\right)\)
Tìm x biết :
a, ( 4x - 9 ) . ( 2,5 + \(\frac{-7}{3}\). x ) = 0
b, \(\frac{1}{x\cdot\left(x+1\right)}\cdot\frac{1}{\left(x+1\right)\cdot\left(x+2\right)}\cdot\frac{1}{\left(x+2\right)\cdot\left(x+3\right)}-\frac{1}{x}=\frac{1}{2015}\)
a)
( 4x - 9 ) ( 2,5 + (-7/3) . x ) = 0
\(\Rightarrow\orbr{\begin{cases}4x-9=0\\2,5+\frac{-7}{3}x=0\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}x=\frac{9}{4}\\x=\frac{15}{14}\end{cases}}\)
P/s: đợi xíu làm câu b
b) \(\frac{1}{x\left(x+1\right)}\cdot\frac{1}{\left(x+1\right)\left(x+2\right)}\cdot\frac{1}{\left(x+2\right)\left(x+3\right)}-\frac{1}{x}=\frac{1}{2015}\)
\(\frac{1}{x}-\frac{1}{x+1}+\frac{1}{x+1}-\frac{1}{x+2}+\frac{1}{x+2}-\frac{1}{x+3}-\frac{1}{x}=\frac{1}{2015}\)
\(\frac{-1}{x+3}=\frac{1}{2015}\)
\(\Leftrightarrow x+3=-2015\)
\(\Leftrightarrow x=-2018\)
Vậy,.........
A/ Ta có số nào nhân với 0 cx = 0
Vậy từ đó suy ra 2 trường hợp
TH1\(4x-9=0\)
\(=>x=\frac{9}{4}\)
TH2 \(2,5+-\frac{7}{3}x=0\)
\(=>x=\frac{15}{14}\)
a) Tính
\(A=\left(1-\frac{1}{2}\right)\cdot\left(1-\frac{1}{3}\right)\cdot\left(1-\frac{1}{4}\right)\cdot\cdot\cdot\left(1-\frac{1}{2014}\right)\cdot\left(1-\frac{1}{2015}\right)\cdot\left(1-\frac{1}{2016}\right)\)
b) Tìm x:
\(\frac{x-2}{12}+\frac{x-2}{20}+\frac{x-2}{30}+\frac{x-2}{42}+\frac{x-2}{56}+\frac{x-2}{72}=\frac{16}{9}\)
b)
\(x-2.\left(\frac{1}{3\cdot4}+\frac{1}{4\cdot5}+\frac{1}{5\cdot6}+\frac{1}{6\cdot7}+\frac{1}{7\cdot8}+\frac{1}{8\cdot9}\right)=\frac{16}{9}\)
\(x-2\cdot\left(\frac{1}{3}-\frac{1}{9}\right)=\frac{16}{9}\)
\(x-2=\frac{16}{9}:\left(\frac{1}{3}-\frac{1}{9}\right)\)
\(x-2=8\)
=> x = 10
a)
\(A=\frac{1}{2}.\frac{2}{3}\cdot\frac{3}{4}\cdot\cdot\cdot\frac{2013}{2014}\cdot\frac{2014}{2015}\cdot\frac{2015}{2016}\)
\(A=\frac{1}{2016}\)
A = ( 1 - 1/2) . ( 1 - 1/3 ) . (1-1/4) ....(1-1/2015) . (1-1/2016)
A= 1/2 . 2/3 . 3/4...2014/2015 . 2015/2016
A = 1 . 2 . 3 . 4 ... 2014 . 2015/ 2 . 3 . 4 ... 2015 . 2016
A = 1/ 2016
\(\left[6\cdot\left(-\frac{1}{3}\right)^2-3\cdot\left(-\frac{1}{3}\right)+1\right]:\left(-\frac{1}{3}-1\right)\)
\(\frac{\left(\frac{2}{3}\right)^3\cdot\left(-\frac{3}{4}\right)^2\cdot\left(-1\right)^{2003}}{\left(\frac{2}{5}\right)^2\cdot\left(-\frac{5}{12}\right)^3}\)
\(\frac{\left(\frac{2}{3}\right)^3\cdot\left(-\frac{3}{4}^2\right)\cdot\left(-1\right)^{2003}}{\left(\frac{2}{5}\right)^2\cdot\left(-\frac{5}{12}\right)^3}\)
\(=\frac{\frac{8}{27}\cdot\frac{9}{16}\cdot\left(-1\right)}{\frac{4}{25}\cdot\left(-\frac{125}{1728}\right)}\)
\(=\frac{-\frac{1}{6}}{-\frac{5}{432}}=-\frac{1}{6}:\left(-\frac{5}{432}\right)=\frac{72}{5}\)
\(\left[6.\left(\frac{-1}{3}\right)^2-3.\left(\frac{-1}{3}\right)+1\right]:\left(\frac{-1}{3}-1\right)\)
\(=\left[6.\frac{1}{9}-\left(-1\right)+1\right]:\frac{-4}{3}\)
\(=\left[\frac{2}{3}-\left(-1\right)+1\right]:\frac{-4}{3}\)
\(=\frac{8}{3}:\frac{-4}{3}=\frac{-24}{12}=-2\)
~ Hok tốt ~
\(\left[6\cdot\left(-\frac{1}{3}\right)^2-3\cdot\left(-\frac{1}{3}\right)+1\right]:\left(-\frac{1}{3}-1\right)\)
\(=\left[6\cdot\left(-\frac{1}{9}\right)+1+1\right]:\left(-\frac{4}{3}\right)\)
\(=\left(-\frac{2}{3}+2\right):\left(-\frac{4}{3}\right)\)
\(=\frac{4}{3}:\left(-\frac{4}{3}\right)=-1\)
A)\(2009^{\left(1000-1^3\right)\cdot\left(1000-2^3\right)\cdot...\cdot\left(1000-15^3\right)}\)
B)\(\left(\frac{1}{125}-\frac{1}{1^3}\right)\cdot\left(\frac{1}{125}-\frac{1}{2^3}\right)\cdot...\cdot\left(\frac{1}{125}-\frac{1}{25^3}\right)\)
C)\(\left(\frac{1}{38}-1\right)\cdot\left(\frac{1}{37}-1\right)\cdot\left(\frac{1}{36}-1\right)\cdot...\cdot\left(\frac{1}{2}-1\right)\)
HELP ME!!!!!!!!!!!!!!!!!!!
#)Giải :
a)\(2009^{\left(1000-1^3\right)\left(1000-2^3\right)...\left(1000-15^3\right)}=2009^{\left(1000-1^3\right)...\left(1000-10^3\right)...\left(1000-15^3\right)}=2009^0=1\)
b)\(\left(\frac{1}{125}-\frac{1}{1^3}\right)\left(\frac{1}{125}-\frac{1}{2^3}\right)...\left(\frac{1}{125}-\frac{1}{25^3}\right)=\left(\frac{1}{125}-\frac{1}{1^3}\right)...\left(\frac{1}{125}-\frac{1}{5^3}\right)...\left(\frac{1}{125}-\frac{1}{25^3}\right)=\left(\frac{1}{125}-\frac{1}{1^3}\right)...0...\left(\frac{1}{125}-\frac{1}{25^3}\right)=0\)
Tính
a)\(\left(-\frac{1}{4}\right)^2+\frac{3}{8}\cdot\left(-\frac{1}{6}\right)-\frac{3}{16}:\left(-\frac{1}{2}\right)\)
b)\(-\frac{1}{2}:\left(1-\frac{3}{4}\right)^2-\frac{2}{3}:\frac{9}{8}-\left(\frac{9}{8}\right)^0\)
c)\(4\cdot\left(-\frac{1}{2}\right)^3+2\cdot\left(-\frac{1}{2}\right)^2-3\cdot\left(-\frac{1}{2}\right)+2006^0\)
a) \(\frac{\left(-1\right)}{4}^2+\frac{3}{8}.\left(\frac{-1}{6}\right)-\frac{3}{16}:\left(\frac{-1}{2}\right)=\left(\frac{-1}{4}\right)^2+\left(\frac{-3}{68}\right)-\left(\frac{-3}{8}\right)=\left(\frac{1}{16}\right)+\left(\frac{-3}{68}\right)-\left(\frac{-3}{8}\right)=\frac{5}{272}-\left(\frac{-3}{8}\right)=\frac{107}{272}\)
Tính các tích sau: với n là số tự nhiên, n<3
a) \(\left(1-\frac{1}{2}\right)\cdot\left(1-\frac{1}{3}\right)\cdot\left(1-\frac{1}{4}\right)\cdot...\cdot\left(1-\frac{1}{n}\right)\)
b) \(\left(1-\frac{1}{2^2}\right)\cdot\left(1-\frac{1}{3^2}\right)\cdot\left(1-\frac{1}{4^2}\right)\cdot...\cdot\left(1-\frac{1}{n^2}\right)\)