Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Kutevippro
Xem chi tiết
Kutevip
Xem chi tiết
Bùi phương anh
Xem chi tiết
l҉o҉n҉g҉ d҉z҉
7 tháng 9 2020 lúc 12:00

1. a là số tự nhiên chia 5 dư 1

=> a = 5k + 1 ( k thuộc N )

b là số tự nhiên chia 5 dư 4

=> b = 5k + 4 ( k thuộc N )

Ta có ( b - a )( b + a ) = b2 - a2

                                   = ( 5k + 4 )2 - ( 5k + 1 )2

                                   = 25k2 + 40k + 16 - ( 25k2 + 10k + 1 )

                                   = 25k2 + 40k + 16 - 25k2 - 10k - 1

                                   = 30k + 15

                                   = 15( 2k + 1 ) chia hết cho 5 ( đpcm )

2. 2n2( n + 1 ) - 2n( n2 + n - 3 )

= 2n3 + 2n2 - 2n3 - 2n2 + 6n

= 6n chia hết cho 6 ∀ n ∈ Z ( đpcm )

3. n( 3 - 2n ) - ( n - 1 )( 1 + 4n ) - 1

= 3n - 2n2 - ( 4n2 - 3n - 1 ) - 1

= 3n - 2n2 - 4n2 + 3n + 1 - 1

= -6n2 + 6n

= -6n( n - 1 ) chia hết cho 6 ∀ n ∈ Z ( đpcm )

Khách vãng lai đã xóa
Đậu Thị Quỳnh Anh
Xem chi tiết
ngonhuminh
23 tháng 12 2016 lúc 16:36

Viết biểu thức không chuẩn, cái nào số hạng, cái nào là số mũ

TFBoys Nam Thần
Xem chi tiết
Tân Nguyễn Hoàng
3 tháng 4 2016 lúc 21:39

ta co:(11mu n+2)+(12 mu 2n+1)=121.(11mu n)+12.(144 mu n)

=(133-12).(11mu n)+12.(144 mu n)

=133.(11 mu n)+(144mu n -11 mu n).12

ta lai co:133.11 mu n chia het cho 133;(144 mu n)-(11 mu n) chia het cho (144-11)

=>(144 mu n)-(11 mu n)chia het cho 133

=>(11 mu n+2)+(12 mu 2n+1) chia het cho 133

Tô Bảo Ngân
Xem chi tiết
Bui Trinh Minh Ngoc
Xem chi tiết
kudo shinichi
21 tháng 7 2018 lúc 8:37

\(\left(2n-1\right)^3-\left(2n-1\right)\)

\(=\left(2n-1\right).\left[\left(2n-1\right)^2-1^2\right]\)

\(=\left(2n-1\right).\left(2n-1-1\right).\left(2n-1+1\right)\)

\(=\left(2n-2\right).\left(2n-1\right).2n\)

\(=2.\left(n-1\right).\left(2n-1\right).2n\)

Với \(n\)lẻ 

\(\Rightarrow n-1\)chẵn

\(\Rightarrow n-1⋮2\)

\(\Rightarrow2.\left(n-1\right)⋮4\)

\(\Rightarrow2.\left(n-1\right).2n⋮8\)

\(\Rightarrow2.\left(n-1\right).\left(2n-1\right).2n⋮8\)(1)

Với n chẵn

\(\Rightarrow n⋮2\)

\(\Rightarrow2n⋮4\)

\(\Rightarrow2.\left(n-1\right).2n⋮8\)

\(\Rightarrow2.\left(n-1\right).\left(2n-1\right).2n⋮8\)(1)

Từ (1) và (2)

\(\Rightarrow\left(2n-1\right)^3-\left(2n-1\right)⋮8\forall x\inℤ\)

                                                     đpcm

nguyen thi ai
Xem chi tiết
l҉o҉n҉g҉ d҉z҉
12 tháng 11 2020 lúc 16:13

a) Gọi d là ƯC( 7n + 10 ; 5n + 7 ) 

=> \(\hept{\begin{cases}7n+10⋮d\\5n+7⋮d\end{cases}}\Rightarrow\hept{\begin{cases}5\left(7n+10\right)⋮d\\7\left(5n+7\right)⋮d\end{cases}}\Rightarrow\hept{\begin{cases}35n+50⋮d\\35n+49⋮d\end{cases}}\)

=> ( 35n + 50 ) - ( 35n + 49 ) chia hết cho d

=> 35n + 50 - 35n - 49 chia hết cho d

=> 1 chia hết cho d

=> d = 1

=> ƯCLN( 7n + 10 ; 5n + 7 ) = 1

=> 7n + 10 ; 5n + 7 là hai số nguyên tố cùng nhau ( đpcm )

b) Gọi d là ƯC( 2n + 3 ; 4n + 8 )

=> \(\hept{\begin{cases}2n+3⋮d\\4n+8⋮d\end{cases}}\Rightarrow\hept{\begin{cases}2\left(2n+3\right)⋮d\\4n+8⋮d\end{cases}}\Rightarrow\hept{\begin{cases}4n+6⋮d\\4n+8⋮d\end{cases}}\)

=> ( 4n + 8 ) - ( 4n + 6 ) chia hết cho d

=> 4n + 8 - 4n - 6 chia hết cho d

=> 2 chia hết cho d

=> d ∈ { 1 ; 2 }

Với d = 2 => \(2n+3⋮̸̸d\)

=> d = 1

=> ƯCLN( 2n + 3 ; 4n + 8 ) = 1

=> 2n + 3 ; 4n + 8 là hai số nguyên tố cùng nhau ( đpcm )

Khách vãng lai đã xóa
Nguyen Ba Lam
Xem chi tiết