3 mũ 1+3mũ2+3mũ3+3mũ4+...3mũ199
tính tổng G= 1-3+3mũ2-3mũ3+3mũ4-...-3mũ99+3mũ100
G=1-3+32-33+34-...-399+3100
3G=3-32+33-34+35-....-3100+3101
3G+G=(3-32+33-34+35-....-3100+3101)+(1-3+32-33+34-...-399+3100)
4G = 3101+1
G=\(\frac{3^{101}+1}{4}\)
\(A=\)\(-\frac{1}{3}+\frac{1}{3^2}-\frac{1}{3^3}+\frac{1}{3^4}-...+\frac{1}{3^{50}}-\frac{1}{3^{51}}\)
\(3A=-1+\frac{1}{3}-\frac{1}{3^2}+...+\frac{1}{3^{49}}-\frac{1}{3^{50}}\)
\(4A=-1-\frac{1}{3^{51}}\)
\(A=\frac{-1-\frac{1}{3^{51}}}{4}\)
k cho mik nha
cho C=3- 3mũ2+ 3mũ3- 3mũ4+....+ 3mũ23- 3mũ24. CM Cchia hết cho 420
3mũ1-3mũ2+3mũ3-3mũ4+ . . . +3mũ9-3mũ10+3mũ11
Đặt \(D=3-3^2+3^3-3^4+...+3^9-3^{10}+3^{11}\)
=> \(3D=3^2-3^3+3^4-3^5+...+3^{10}-3^{11}+3^{12}\)
Cộng vế 2 BT trên ta được:
\(D+3D=\left(3-3^2+...+3^{11}\right)+\left(3^2-3^3+...+3^{12}\right)\)
\(\Leftrightarrow4D=3^{12}+3\)
\(\Rightarrow D=\frac{3^{12}+3}{4}\)
Chứng minh rằng:
S=3+3mũ2+3mũ3+3mũ4+...+3mũ100 chia hết cho 4
F = 1+2-3-4+5+6-7-8+...+97+98-99-99
G = 1-3+3mũ2-3mũ3+3mũ4-...-3mũ99+3mũ100
cho C=3- 3mũ2+ 3mũ3- 3mũ4+....+ 3mũ23- 3mũ24. CM Cchia hết cho 420 giúp tui với các bạn ơn! cần gấp ạ
q bằng1+3+3mũ2+3mũ3+3mũ4+...+3mũ11:52
Mọi người ơi giải hộ mk nhé
\(Q=1+3+3^2+3^3+3^4+...+3^{11}\)
\(3Q=3+3^2+3^3+3^4+3^5+...+3^{12}\)
\(3Q-Q=\left(3+3^2+3^3+3^4+3^5+...+3^{12}\right)-\left(1+3+3^2+3^3+3^4+...+3^{11}\right)\)
\(2Q=3^{12}-1\)
\(Q=\frac{3^{12}-1}{2}\)
cho S =1 +3+3mũ2 +3mũ3+ .......................................................................................................................+ 3 mũ 119
a, tính S
b, cmr S chia hết cho 13
c,cmr S chia hết cho 40
a/
\(3S=3+3^2+3^3+3^4+...+3^{120}\)
\(2S=3S-S=3^{120}-1\Rightarrow S=\frac{3^{120}-1}{2}\)
b/ \(S=\left(1+3+3^2\right)+\left(3^3+3^4+3^5\right)+...+\left(3^{117}+3^{118}+3^{119}\right)\)
\(S=13+3^3\left(1+3+3^2\right)+...+3^{117}\left(1+3+3^2\right)\)
\(S=13+3^3.13+...+3^{117}.13=13\left(1+3^3+...+3^{117}\right)\) chia hết cho 13
c/
\(S=\left(1+3+3^2+3^3\right)+\left(3^4+3^5+3^6+3^7\right)+...+\left(3^{116}+3^{117}+3^{118}+3^{119}\right)\)
\(S=\left(1+3+3^2+3^3\right)+3^4\left(1+3+3^2+3^3\right)+...+3^{116}\left(1+3+3^2+3^3\right)\)
\(S=40+3^4.40+...+3^{116}.40=40\left(1+3^4+...+3^{116}\right)\) chia hết cho 40