SO SÁNH
\(A=\frac{10^5+1}{10^6+1}\) VÀ \(B=\frac{10^{16}+1}{10^{17}+1}\)
\(C=\frac{199^{88}-1}{199^{89}-1}\) VÀ \(D=\frac{199^{89}-1}{199^{90}-1}\)
.................................AI LÀM ĐÚNG MK SẼ TICK CHO.....................................
So sánh 2 phân số
\(A=\frac{10^{1994}+1}{10^{1995}+1}\)và \(B=\frac{199^5+1}{199^6+1}\)
So sánh 2 phân số sau
\(A=\frac{10^{1994}+1}{10^{1995}+1}\)và \(B=\frac{199^5+1}{199^6+1}\)
So sánh:
a)\(\frac{-13}{38}\)và \(\frac{29}{-88}\)
b) \(3^{301}\)và\(5^{199}\)
c)\(\frac{10^{2018}+5}{10^{2018}-8}\)và\(\frac{10^{2019}+5}{10^{2019}-8}\)
a, Ta có : \(\frac{13}{38}>\frac{13}{39}=\frac{1}{3}=\frac{29}{87}>\frac{29}{88}\)
\(\Rightarrow\frac{13}{38}>\frac{29}{88}\Rightarrow\frac{-13}{38}< \frac{29}{-88}\)
b, Ta có: \(3^{301}>3^{300}=\left(3^3\right)^{100}=27^{100}\left(1\right)\)
\(5^{199}< 5^{200}=\left(5^2\right)^{100}=25^{100}\left(2\right)\)
Do \(25^{100}< 27^{100}\Rightarrow5^{200}< 3^{300}\)\(\left(3\right)\)
Từ \(\left(1\right),\left(2\right),\left(3\right)\Rightarrow5^{199}< 5^{200}< 3^{300}< 3^{301}\Rightarrow5^{199}< 3^{301}\)
c, Ta có: \(\frac{10^{2018}+5}{10^{2018}-8}=\frac{10^{2018}-8+13}{10^{2018}-8}=1+\frac{13}{10^{2018}-8}\)
\(\frac{10^{2019}+5}{10^{2019}-8}=\frac{10^{2019}-8+13}{10^{2019}-8}=1+\frac{13}{10^{2019}-8}\)
Do \(\frac{13}{10^{2018}-8}>\frac{13}{10^{2019}-8}\Rightarrow1+\frac{13}{10^{2018}-8}>1+\frac{13}{10^{2019}-8}\Rightarrow\frac{10^{2018}+5}{10^{2018}-8}>\frac{10^{2019}+5}{10^{2019}-8}\)
a/ so sánh 199 mũ 20 với 100 mũ 24
b/so sánh A=10 mũ 15+1 trên 10 mũ 6+1 với B=10 mũ 16+1 trên 10 mũ 17+1
a
nAK.DNX. 0pwi9dOjkciopjopoijasd
Bài 5 : Chững minh rẳng :
a) S= \(\frac{3}{10}+\frac{3}{11}+\frac{3}{12}+\frac{3}{13}+\frac{3}{14}\) CMR :1< S <2
b) \(\frac{1}{4^2}+\frac{1}{6^2}+\frac{1}{8^2}+\frac{1}{10^2}+...+\frac{1}{\left(2n\right)^2}< \frac{1}{4}\)
c) \(\frac{3}{4}+\frac{8}{9}+\frac{15}{16}+...+\frac{2499}{2500}>48\)
d) \(\frac{1}{5}+\frac{1}{13}+\frac{1}{14}+\frac{1}{15}+\frac{1}{61}+\frac{1}{62}+\frac{1}{63}< \frac{1}{2}\)
Bài :So sánh phân số sau:
a)\(\frac{1985.1987-1}{1980+1985.1986}và1\)
b) A= \(\frac{13^{15}+1}{13^{16}+1}\)và B = \(\frac{13^{16}+1}{13^{17}+1}\)
c)\(\frac{18}{53}và\frac{26}{79}\)
d)\(\frac{5}{8}và\frac{14}{17}\)
e)\(\frac{1}{5^{199}}và\frac{1}{3^{300}}\)
g)\(\frac{1}{3^{17}}và\frac{1}{5^{10}}\)
h) \(\frac{18}{109}và\frac{5}{30}\)
cho A= 10^199+1/100^200+1 và B=10^198+1/10^199+1. so sánh A và B
1:
a) Cho A= \(\frac{1}{1^2}+\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{100^2}\) . So sánh A và \(\frac{199}{100}\)
b) Tìm tích: \(\frac{3}{2^2}.\frac{8}{3^2}.\frac{15}{4^2}.\frac{24}{5^2}.....\frac{99}{10^2}\)
A = \(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{100^2}\)
A < \(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{99.100}\)
A < \(\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{99}-\frac{1}{100}\)
A < 1 - \(\frac{1.}{100}\)
A < \(\frac{99}{100}< \frac{199}{100}\)
=> A < \(\frac{199}{100}\)
b,
S = \(\frac{3}{2^2}.\frac{8}{3^2}.\frac{15}{4^2}...\frac{99}{10^2}\)
S = \(\frac{1.3}{2.2}.\frac{2.4}{3.3}.\frac{3.5}{4.4}...\frac{9.11}{10.10}\)
S = \(\frac{1.3.2.4.3.5.4.6.5.7...9.11}{2.2.3.3.4.4...10.10}\)
S = \(\frac{1.2.3^2.4^2.5^2...9^2.10.11}{2^2.3^3.4^2...10^2}\)
S = \(\frac{1.11}{2.10}\)
S = \(\frac{11}{20}\)
Cho \(A=\frac{3^3}{1}-\frac{5^3}{3}+\frac{7^3}{6}-\frac{9^3}{10}+\frac{11^3}{15}-\frac{13^3}{21}+\frac{15^3}{28}-\frac{17^3}{36}+...+\frac{199^3}{4950}\)
So sánh A với 814
Ta có:
\(\frac{A}{2}=\frac{3^3}{2}-\frac{5^3}{6}+\frac{7^3}{12}-\frac{9^3}{20}+\frac{11^3}{30}-\frac{13^3}{42}+\frac{15^3}{56}-\frac{17^3}{72}+...+\frac{199^3}{9900}\)
\(=3^2.\left(1+\frac{1}{2}\right)-5^2.\left(\frac{1}{2}+\frac{1}{3}\right)+7^2.\left(\frac{1}{3}+\frac{1}{4}\right)-9^2.\left(\frac{1}{4}+\frac{1}{5}\right)+...+199^2.\left(\frac{1}{99}+\frac{1}{100}\right)\)
\(=3^2+\left(\frac{3^2}{2}-\frac{5^2}{2}\right)-\left(\frac{5^2}{3}-\frac{7^2}{3}\right)+\left(\frac{7^2}{4}-\frac{9^2}{4}\right)-\left(\frac{9^2}{5}-\frac{11^2}{5}\right)+...+\left(\frac{197^2}{99}-\frac{199^2}{99}\right)+\frac{199^2}{100}\)
\(=3^2-8+8-8+...+8+\frac{199^2}{100}=3^2+\frac{199^2}{100}< 3^2+\frac{199.200}{100}=9+398=407\)
\(\Rightarrow A< 407.2=814\)
1. So sánh :
a)\(\frac{1}{5^{199}}\)và \(\frac{1}{3^{300}}\)
b) \(\frac{10^{2015}+1}{10^{2016}+1}\) và \(\frac{10^{2016}+1}{10^{2017}+1}\)
2. Cho phân số \(\frac{5n+6}{8n+7}\) (n thuộc N). Hỏi phân số đó có thể rút gọn được cho những số nào.