Bài 1 : Hình thang ABCD có góc A= góc D(=90 độ) và AC vuông góc với BD tại O
a. Chứng minh rằng AD= căn bậc hai của AB.DC
b. Cho AB=9cm CD=16cm tính OD, OA, OB, OC
Cho hình thang ABCD có góc A=góc D=90 độ, AC vuông góc với BD tại O
a,CM AD2=AB.CD
b,Cho AB=9cm, CD=16cm . Tính diện tích hình thang ABCD
c,Tính OA, OB,OC , OD
ta có: góc D1 + D2 =90
mà D1 + C1 =90
=>D2=C1
xét tam giác ABD và DAC có
BAD=ADC
D2=C1(cmt)
=>ABD đồng dạng DAC (g-g)
=>AB/AD=AD/DC
<=>AD^2=AB.DC(1)
b) Bạn áp dung CT(1) tính AD sau đó tính DT abcd
c) Dựa vào hệ thức lượng trong tam giác vuông:
1/OA^2=1/ab^2 + 1/ad^2 =>OA=...
tính AC,BD bằng Pytago
OC= AC-OA
OD^2=OA*OC =>OD=....
OB=BD-OD
Chúc bạn học tốt !
Cho hình thang ABCD có góc A =góc D = 90độ và hai đường chéo vuông góc tại O
a,c/m:AB2 +CD2=AD2+BC2
b,c/m:AD2=AB.DC
c, Cho AB=9cm;DC=16cm. Tính diện tích hình thang và độ dài các đoạn OA;OB;OC;OD
cho hình thang ABCD có góc A = góc D = 90 độ .hai đường AC và BD vuông góc với nhau tại O
a, chứng minh AD là trung bình nhân của hai đáy
b, cho AB= 18 CD = 32 tính OC , OB , OC . OD
c, chứng minh các độ dài AC. BD và AB+CD là độ dài ba cạnh của tam giác vuông
Cho hình thang ABCD, góc A\(=\)góc D\(=\)90\(°\), hai đường chéo vuông góc với nhau tại O . cho biết AD\(=\)12cm,CD\(=\)16cm . Tính các độ dài OA,OB,OC,OD
Cho hình thang ABCD có góc A= góc D= 90 độ và hai đường chéo vuông góc tại O.
a, Chứng minh hình thang có chiều cao bằng trung bình nhân của hai đáy.
b, Cho AB= 9 cm,CD= 16cm. Tính diện tích hình thang ABCD.
c, Tính độ dài các đoạn thẳng OA,OB,OC,OD.
Cho hình thang ABCD có góc A=D=90 độ,và 2 dg chéo vg góc tại O.
a,Cmr hình thang này có chiều cao =trung bình nhân của 2 đáy
b,Cho AB=9cm,CD=16cm,tính Sabcd
c,tính độ dài OA,OB,OC,OD
Cho hình thang ABCD có góc A = góc D = 90 độ và hai đường chéo vuông góc với nhau tại O.
a/Chứng minh hình thang này có chiều cao bằng trung bình nhân của hai đáy. Nghĩ là chứng minh AD=\(\sqrt{AB.CD}\)
b/Cho AB bằng 9 cm CD = 16 cm Tính diện tích hình thang ABCD
c/Tính độ dài các đoạn thẳng OA,OB,OC,OD
Bài 1: Hình thang ABCD (AB//CD) có AB=AD+BC. Chứng minh rằng các tia phân giác của các góc C và D gặp nhau tại 1 điểm thuộc đáy AB
Bài 2: Hình thang vuông ABCD (góc A = góc D= 90°)có AB =4cm, CD=9cm, BC=13cm. Tính AD
Bài 3: hình thang vuông ABCD (góc A=góc D=90°)có AB =9cm,CD=15cm, AC=17cm. Tính độ dài cạnh bên
Hình thang ABCD , góc C = góc D =90°. Hai đường chéo AC và BD vuông góc nhau tại O.
a.C/m AD là trung bình nhân của 2 đáy.
b.cho AD=18,CD=32. Tính OA, OB, OC, OD
c.C/m các độ dài AC, BD, AB+CD là độ dài 3 cạnh của 1 tam giác vuông