Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Nguyễn Quốc Khánh
Xem chi tiết
Nguyễn Linh Chi
24 tháng 4 2019 lúc 9:45

\(f\left(x\right)\)có hai nghiệm là x=-1 và x=1

ta có: \(f\left(1\right)=0\Leftrightarrow1^3+a+b-2=0\Leftrightarrow a+b=1\)(1)

\(f\left(-1\right)=\left(-1\right)^3+a\left(-1\right)^2+b\left(-1\right)-2=0\Leftrightarrow a-b=3\)(2)

Từ (1) VÀ (2) TA CÓ: \(a=\frac{1+3}{2}=2;b=\frac{1-3}{2}=-1\)

b)Đề bài tìm số chính phương có bốn chữ số khác nhau ?

Đặt : \(\overline{abcd}=n^2;\overline{dcba}=m^2\)(g/s m, n là các số tự nhiên)

Theo bài ta có các giả thiết sau:  

\(1000\le m^2,n^2\le9999\Rightarrow32\le m;n\le99\)(1)

\(m^2⋮n^2\Rightarrow m⋮n\)(2)

=> Đặt m=kn (k là số tự nhiên, K>1)

Ta có: \(\hept{\begin{cases}32\le n\le99\\32\le m\le99\end{cases}\Rightarrow}\hept{\begin{cases}32.k\le kn\le99k\\32\le kn\le99\end{cases}\Rightarrow}32k\le kn\le99\Rightarrow k\le\frac{99}{32}\Rightarrow k\le3\)

Vậy nên k=2 hoặc bằng 3

Vì \(m=kn\Rightarrow m^2=k^2.n^2\Rightarrow\overline{dcba}=k^2.\overline{abcd}\)

+) Với k=2

Ta có: \(\overline{dcba}=4.\overline{abcd}\)

Vì  \(\overline{abcd};\overline{dcba}\)là các số chính phương có 4 chữ số khác nhau \(\Rightarrow d,a\in\left\{1;4;6;9;\right\}\)

và \(\overline{dcba}⋮\overline{abcd}\)nên d>a(2)

@) Khi \(a\ge4\Rightarrow\overline{dcba}\ge4.\overline{4bcd}>9999\)(loại)

Nên a=1.

Ta có: \(\overline{dcb1}=4.\overline{1bcd}\)vô lí vì không có số \(d\in\left\{1;4;6;9;\right\}\)nhân với 4 bằng 1

+) Với K=3

tương tự lập luận trên ta có a=1

Ta có: \(\overline{dcb1}=9.\overline{1bcd}\)=> d=9

Ta có: \(\overline{9cb1}=9.\overline{1bc9}\Leftrightarrow9000+c.100+b.10+1=9\left(1000+b.100+c.10+9\right)\)

\(\Leftrightarrow10c=890b+80\Leftrightarrow c=89b+8\)vì c, b là các số tự nhiên từ 0, đến 9

=> b=0; c=8

=> Số cần tìm 1089 và 9801 thỏa mãn với các điều kiện bài toán 

Văn Bùi Lê Dình
Xem chi tiết
nguyen phuoc thinh
Xem chi tiết
khócVô lệ
20 tháng 8 2016 lúc 13:09

a) Gọi abcd có dạng: 1000a + 100b + 10c + d, tương tự bcd= 100b + 10c + d ... 
Theo đề ra : 1000a + 200b + 30c + 4d =4574 
=> d có thể là 1 hoặc 6 (tận cùng bằng 4). 
- Với d=1 thì c=9 => không có b thỏa. 
- d = 6 thì 4d=24 (nhớ 2) => c = 5 để 3c+2 có tận cùng là 7, khi đó, nhớ 1. Vậy b là 2 thêm 1 là 5 => a là 4 
Vậy abcd là 4256

b) (Tương tự)

Nguyễn Hữu Thế
Xem chi tiết
Pham Vân Giang
Xem chi tiết
Đặng Hoàng Long
13 tháng 10 2016 lúc 20:33

:  bạn có thể tìm thấy bài này trong 255 bài toán số học chọn lọc 
nếu chưa có sách này bạn chịu khó chờ một chút, mình sẽ viết bài ngay 
a,b,c,d là các chữ số 
=> d<10 
=> 0<a<3 
mà 4 là số chẵn 
=> dcba là số chẵn 
=> a chẵn 
=> a = 2 
ta có 4. 2bcd = dcb2 
=> d có thể nhận các giá trị 8 hoặc 9 
mà một số có tận cùng là 8 nhân với 4 sẽ được số tận cùng là 2 
=> d = 8 
ta có 4. 2bc8 = 8cb2 
<=> 4. (2000 + 100b + 10c + 8) = 8000 + 100c + 10b + 2 
<=> 8000 + 400b + 40c + 32 = 8000 + 100c + 10b + 2 
<=> 60c - 390b = 30 
<=> 2c - 13b = 1 
<=> 13b + 1 = 2c 
mà 2c < 20 
=> 13b < 19 
=> b < 2 
2c là số chẵn => b lẻ 
=> b = 1 
=> c = 7 
thử lại thấy thỏa mãn 
vậy số cần tìm là 2178

Pham Vân Giang
13 tháng 10 2016 lúc 20:37

bạn ơi abcd là 1 stn nha

nguyễn văn an
Xem chi tiết
Ghét sống ảo
Xem chi tiết
Ghét sống ảo
14 tháng 7 2016 lúc 12:06

Các bạn giải hẳn ra nhé. Tks

0o0_ Nguyễn Xuân Sáng _0...
14 tháng 7 2016 lúc 12:11

a,b,c,d là các chữ số 
=> d<10 
=> 0<a<3 
mà 4 là số chẵn 
=> dcba là số chẵn 
=> a chẵn 
=> a = 2 
ta có 4. 2bcd = dcb2 
=> d có thể nhận các giá trị 8 hoặc 9 
mà một số có tận cùng là 8 nhân với 4 sẽ được số tận cùng là 2 
=> d = 8 
ta có 4. 2bc8 = 8cb2 
<=> 4. (2000 + 100b + 10c + 8) = 8000 + 100c + 10b + 2 
<=> 8000 + 400b + 40c + 32 = 8000 + 100c + 10b + 2 
<=> 60c - 390b = 30 
<=> 2c - 13b = 1 
<=> 13b + 1 = 2c 
mà 2c < 20 
=> 13b < 19 
=> b < 2 
2c là số chẵn => b lẻ 
=> b = 1 
=> c = 7 
thử lại thấy thỏa mãn 
vậy số cần tìm là 2178

Cấn Ngọc Minh
Xem chi tiết
Vũ Tiến Manh
6 tháng 10 2019 lúc 10:42

4.abcd =dcba\(\le9999=>abcd\le2499\)=> a=1 hoặc a=2

mà 4.abcd là số chẵn lên dcba là số chẵn => a=2

dcb2=4.2bcd>4.2000=8000 => d=8 hoặc 9

d=9 thì 4.2bc9 = 9bc2 (4.2bc9 phải có số tận cùng là 6 mà 9bc2 có tận cùng là 2 nên không phù hợp)

vậy d=8 => 4.2bc8=8cb2 <=>4.(2000+100b+10c+8)=8000+100b+10c+2 <=>300b+30c+30=0 (vô lý vì b;c\(\ge0\)

Cô Đơn Một Chú Mèo
Xem chi tiết