S=1-2+3-4+5-.........-48+49-50
Tính S/P biết:
S = 1/2 + 1/3 + 1/4 + 1/5 + ... + 1/49 + 1/50
P = 1/49 + 2/48 + 3/47 + ... + 48/2 +49/1
So sánh tổng : S = 1/5 + 1/9 + 1/10 + 1/41 + 1/42 với 1/2
S=
=50/50+50/49+50/48+...+50/2
=50.(1/50+1/49+1/48+...+1/4+1/3+1/2)
=50
P=
P=(1/49+1)+(2/48+1)+...+(48/2+1)+1
P= 50/49+50/48+....+50/2+50/50=1
vậy s/p = 1/50
S=1/2+1/3+1/4+....+1/49+1/50,P=1/49+2/48+3/47+....+48/2+49/1,hay tim S/P
P = 1/49+2/48+3/47+...+48/2+49/1
Cộng 1 váo mỗi p/s trong 48 p/s đầu , trừ p/s cuối đi 48 ta đượ
P=(1/49+1)+(2/48+1)+...+(48/2+1)+1
P= 50/49+50/48+....+50/2+50/50
Đưa ps cuối lên đầu
P=50/50+50/49+50/48+...+50/2
=50.(1/50+1/49+1/48+...+1/4+1/3+1/2)
=50.S
VậyS/P=1/50
Cho S =1/2 +1/3 + 1/4+...+1/48+1/49+1/50
Và P = 1/49 + 2/48 + 3/47+...+ 48/2 + 49/1
Tính S / P
cho P=1/2+1/3+1/4+...........+1/48+1/49+1/50 và Q=1/49+2/48+3/47+........+47/3+48/2+49/1
cho S = 1/2+1/3+1/4+...+1/49+1/50 và P = 1/49 +2/48+3/47+...+48/2+49/1.
tính S/P
Bài 1 :
S = 1/2 + 1/3 + 1/4 + ... + 1/49 + 1/50
P = 1/49 + 2/48 + 3/47 + ... + 48/2 + 49/1
Tính S/P
Bài 2 :
So sánh tổng : S = 1/5 + 1/9 + 1/10 + 1/41 + 1/42 với 1/2
Bài 1:
Ta có:
\(S=\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+...+\dfrac{1}{50}\)
\(P=\dfrac{1}{49}+\dfrac{2}{48}+\dfrac{3}{47}+...+\dfrac{49}{1}\)
\(\Rightarrow\dfrac{S}{P}=\dfrac{\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+...+\dfrac{1}{50}}{\dfrac{1}{49}+\dfrac{2}{48}+\dfrac{3}{47}+...+\dfrac{49}{1}}\)
\(=\dfrac{\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+...+\dfrac{1}{50}}{\left(1+\dfrac{1}{49}\right)+\left(1+\dfrac{2}{48}\right)+...+\left(1+\dfrac{48}{2}\right)+1}\)
\(=\dfrac{\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+...+\dfrac{1}{50}}{\dfrac{50}{49}+\dfrac{50}{48}+\dfrac{50}{47}+...+\dfrac{50}{2}+\dfrac{50}{50}}\)
\(=\dfrac{\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+...+\dfrac{1}{50}}{50\left(\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+...+\dfrac{1}{50}\right)}=\dfrac{1}{50}\)
Vậy \(\dfrac{S}{P}=\dfrac{1}{50}\)
Bài 2:
Ta có:
\(S=\dfrac{1}{5}+\dfrac{1}{9}+\dfrac{1}{10}+\dfrac{1}{41}+\dfrac{1}{42}\)
\(=\dfrac{1}{5}+\left(\dfrac{1}{9}+\dfrac{1}{10}\right)+\left(\dfrac{1}{41}+\dfrac{1}{42}\right)\)
Nhận xét:
\(\dfrac{1}{9}+\dfrac{1}{10}< \dfrac{1}{8}+\dfrac{1}{8}=\dfrac{1}{4}\)
\(\dfrac{1}{41}+\dfrac{1}{42}< \dfrac{1}{40}+\dfrac{1}{40}=\dfrac{1}{20}\)
\(\Rightarrow S< \dfrac{1}{5}+\dfrac{1}{4}+\dfrac{1}{20}=\dfrac{1}{2}\)
Vậy \(S=\dfrac{1}{5}+\dfrac{1}{9}+\dfrac{1}{10}+\dfrac{1}{41}+\dfrac{1}{42}< \dfrac{1}{2}\)
Cho biểu thức :
S=1/2+1/3+1/4+...+1/49+1/50
P=1/49+2/48+3/47+...+48?2+49/1
Hãy tối giãn phân số S/P
tính các tổng sau
A=1*2+2*3+3*4+4*5+5*6+6*7...+49*50
B=1*50+2*49+3*48+...+49*2+50*1
Tính:\(S=1-2+3-4+5-...-48+49-50\)
S = ( -1 ) + (-1) + ( -1 ) +.......... +(-1) ( có 25 số -1)
S= (-1) . 25
S = -25
ta có 1-2+3-4+5-....-48+49-50
(1-2)+(3-4)+(5+6)+....(47-48)+(49-50)
(-1)+(-1)+(-1)+....+(-1) có 50 số -1
=> (-1).50=-50
-25 nha bạn
bạn k mình nha ( mình mới học lớp 5 thật đấy )
Cho S=1/2+1/3+1/4+.....+1/49+1/50 ,
P=1/49+2/48+3/47+.....+49/1.
Tính S/P
Giúp mình với
xem ở đây bạn nè : http://olm.vn/hoi-dap/question/53910.html