chứng tỏ rằng có 2016 số tự nhiên liên tiếp đều là hợp số
chứng tỏ rằng luôn chỉ ra được 2016 số tự nhiên liên tiếp đều là hợp số cả
Chứng minh rằng có 2016 số tự nhiên liên tiếp đều là hợp số
Chứng tỏ rằng: Có 100 số tự nhiên liên tiếp đều là hợp số
chứng tỏ rằng luôn chỉ ra được 2016 số tự nhiên liên tiếp là hợp số cả
Hãy chứng tỏ rằng có thể lập được một dãy số gồm 1000 số tự nhiên liên tiếp đều là hợp số.
1001!+2,1001!+3,...,1001!+1001
a)Cho a=15!.Chứng tỏ rằng a+2;a+3;a+4;.....a+15 là hợp số
b)Cho b=150!. Chứng tỏ b+2;b+3;b+4;....b+150 là hợp số
c)Có hay ko 2015 số tự nhiên liên tiếp đều là hợp số
a=15! chia hết cho 2
Nên a+2 chia hết cho 2 mà a+2>2 nên a có nhiều hơn 2 ước và là hợp số
a=15! chia hết cho 3
nên a+3 chia hết cho 3 mà a+3>3 nên a+3 có nhiều hơn 2 ước và là hợp số
......
a=15! chia hết cho 15
a+15 chia hết cho 15 nên a+15 là hợp số
b) Tương tự phần a
c có
Đặt c=2016!
c+2;c+3;c+4;..............;c+2016 là hợp số
mà dãy trên là 2015 số liên tiếp
Vậy tồn tại 2015 số liên tiếp là hợp số
Cho a=2.3.4.5.........25
Chứng tỏ rằng 25 số tự nhiên liên tiếp a+2;a+3;a+4;...;a+25 đều là hợp số
a + 2 chia hết cho 2 và lớn hơn 2 nên là hợp số
a + 3 chia hết cho 3 và lớn hơn 3 nên là hợp số
a + 4 chia hết cho 4 và lớn hơn 4 nên là hợp số
....
a + 25 chia hết cho 25 và lớn hơn 25 nên là hợp số
Chứng tỏ rằng trong tập hợp các số tự nhiên lớn hơn 3 không thể tìm thấy ba số lẻ liên tiếp đều là ba số nguyên tố
a)Tổng của ba số tự nhiên liên tiếp có chia hết cho 3?
b) chứng tỏ rằng tích của hai số tự nhiên liên tiếp có chia hết cho 2
c) Chứng tỏ rằng mọi số tự nhiên có ba chữ số giống nhau đều là bội của 37.
d) chứng tỏ rằng tổng ab + ba chia hết cho 11
a, gọi 3 số tự nhiên liên tiếp đó là : a; a + 1; a + 2
tổng của chúng là :
a + a + 1 + a + 2
= (a + a + a) + (1 + 2)
= 3a + 3
= 3(a + 1) ⋮ 3 (đpcm)
b, trong 2 số tự nhiên liên tiếp chắc chắn có 1 số chia hết cho 2
=> tích của chúng chia hết chô 2 (đpcm)
c, gọi số tự nhiên có 3 chữ số giống nhau là : aaa (a là chữ số)
aaa = a.111 = a.3.37 ⋮ 37 (đpcm)
d, ab + ba
= 10a + b + 10b + a
= (10a + a) + (10b + b)
= 11a + 11b
= 11(a + b) ⋮ 11 (đpcm)
d, ab + ba
= 10a + b + 10b + a
= a ( 10 + 1) + b(10+1)
= a.11 + b.11
= ( a + b ).11 \(⋮\)11
Vậy ab + ba \(⋮\)11
Hok tốt
c,
Gọi số có 3 chữ số giống nhau là aaa ( a\(\inℕ^∗\))
Ta có:
aaa = 111.a = 3.37.a \(⋮\)37 ( đpcm )
Hok tốt