- tìm x để (căn x + 2 phần căn x + 5 ) ^ 2 < căn x + 2 phần căn x + 5
căn là của riêng x nhé
Tìm x để biểu thức sau có nghĩa:
a, căn x2-2x+1
b, căn x+3 + căn x+9
c, căn x-1/x+2
d, căn x-2 + 1/x-5
(phần này dấu căn chỉ đến x-2 thôi nhé)
\(a,\)\(\sqrt{x^2-2x+1}=\sqrt{\left(x-1\right)^2}\)
\(đkxđ\Leftrightarrow\sqrt{\left(x-1\right)^2}\ge0\)
\(\Rightarrow x-1\ge0\Rightarrow x\ge1\)
\(b,\)\(\sqrt{x+3}+\sqrt{x+9}\)
\(đkxđ\Leftrightarrow\hept{\begin{cases}x+3\ge0\\x+9\ge0\end{cases}\Rightarrow\hept{\begin{cases}x\ge-3\\x\ge-9\end{cases}}}\)
\(\Rightarrow x\ge-3\)
\(c,\)\(\sqrt{\frac{x-1}{x+2}}\)
\(đkxđ\Leftrightarrow\hept{\begin{cases}x+2\ne0\\\frac{x-1}{x+2}\ge0\end{cases}\Rightarrow\hept{\begin{cases}x\ne-2\\\frac{x-1}{x+2}\ge0\end{cases}}}\)
\(\frac{x-1}{x+2}\ge0\)\(\Rightarrow\orbr{\begin{cases}x-1\ge0;x+2>0\\x-1\le0;x+2< 0\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}x\ge-1;x>-2\\x\le1;x< 2\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}x\ge-1\\x< 2\end{cases}}\)
Vậy căn thức xác định khi x \(\ge\)-1 hoawck x < 2
\(d,\)\(\sqrt{x-2}-\frac{1}{x-5}\)
\(đkxđ\Leftrightarrow\orbr{\begin{cases}\sqrt{x-2}xđ\\\frac{1}{x-5}xđ\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}x-2\ge0\\x-5\ne0\end{cases}\Rightarrow\orbr{\begin{cases}x\ge2\\x\ne5\end{cases}}}\)
Vậy biểu thức xác định \(\Leftrightarrow x\ge2\)và \(x\ne5\)
Tìm x để biểu thức sau có nghĩa:
a, căn x+3 + căn x2+9
b, căn x-1/x+2
c, căn x-2 + 1/x-5
( phần này căn chỉ đến x-2 thôi nhé)
a) \(\sqrt{x+3}+\sqrt{x^2+9}\)
Ta thấy \(x^2\ge0\Rightarrow x^2+9\ge9\Rightarrow\sqrt{x^2+9}\ge3\)(luôn xác định)
Vậy để biểu thức xác định thì \(\sqrt{x+3}\)phải xác định
\(\Rightarrow x+3\ge0\Leftrightarrow x\ge-3\)
Vậy \(ĐKXĐ:x\ge-3\)
b) \(\sqrt{\frac{x-1}{x+2}}\)
Để biểu thức trên xác định thì x - 1 và x + 2 cùng dấu
\(TH1:\hept{\begin{cases}x-1>0\\x+2>0\end{cases}}\Leftrightarrow\hept{\begin{cases}x>1\\x>-2\end{cases}}\Rightarrow x>1\)
\(TH1:\hept{\begin{cases}x-1< 0\\x+2< 0\end{cases}}\Leftrightarrow\hept{\begin{cases}x< 1\\x< -2\end{cases}}\Rightarrow x< -2\)
Vậy \(ĐKXĐ:x>1;x< -2\)
c) \(\sqrt{x-1}+\frac{1}{x-5}\)
Để biểu thức xác định thì \(x-5\ne0\Leftrightarrow x\ne5\)
Và \(x-1\ge0\Leftrightarrow x\ge1\)
Vậy \(ĐKXĐ:x\ge1;x\ne5\)
giải các phương trình sau A, 5căn bậc hai của 12x -4 căn bậc hai của 3x +2 căn bậc hai của 48x =14 B,căn bậc hai của 4x-20 +căn bậc hai của x-5 - 1 phần 3 căn bậc hai của 9x-45
Tìm x để 2(căn x cộng 1 phần căn x) bằng 2 căn x cộng 5
.Tìm x , biết : a, x + 2 căn x = 0 ; b, 5x= 10 căn x ; 2. Cmr : a, căn 50 - căn 17 > 11 ; b, căn 6 + căn 12 + căn 30 +căn 56 < 19 ; 5. So sánh a, căn 26 + căn 17 và 9 ; b, căn 6 - căn 5 và 1 ; 6. Cho B = căn x +1 tất cả phần căn x - 2 .Tìm x để B nhận giá trị nguyên . help me !
Lê Thanh Thùy Ngân
cmr là chứng minh rằng bạn nhé
rút gọn phân thức a = 1 - căn x phần 1 + căn x chia căn x + 3 phần căn x trừ 2 cộng căn x + 2/3 trừ căn x + căn x + 2 phần x - 5 căn x + 6
Phân tích thành nhân tử :
a, x2-2 căn 2 . x +2
( phần này dấu căn đến số 2 nhé)
b, x2 +2 căn 5.x +5
( phần này dấu căn chỉ đến số 5 thôi nhé
a) \(x^2-2\sqrt{2}x+2\)
\(=\left(x-\sqrt{2}\right)^2\)
b) \(x^2+2\sqrt{5}x+5\)
\(=\left(x+5\right)^2\)
1 .Tìm x , biết : a, x + 2 căn x = 0 ; b, 5x= 10 căn x ; 2. Cmr : a, căn 50 - căn 17 > 11 ; b, căn 6 + căn 12 + căn 30 +căn 56 < 19 ; 5. So sánh a, căn 26 + căn 17 và 9 ; b, căn 6 - căn 5 và 1 ; 6. Cho B = căn x +1 tất cả phần căn x - 2 .Tìm x để B nhận giá trị nguyên . help me !
RÚT GỌN CÁC BIỂU THỨC SAU .
1).(1 phần a trừ căn a cộng 1 phần căn a trừ 1) chia căn a + 1 phần a - 2căn a+ 1
2). 2 trừ căn x phần căn x trừ 1 trừ 2 x cộng 3 căn x trừ 1 phần x cộng 2 căn x trừ 3 cộng căn x cộng 1 phần căn x cộng 3
3). Căn x trừ 3 phần 2 trừ căn x + căn x - 2 phần 3 + căn x - 9 - x phần x cộng căn x trừ 6
4). (Căn x + căn y phần 1 trừ căn xy cộng căn x trừ căn x phần 1 + căn xy )chia (x + xy phần 1 - xy)
5). (Căn x trừ 3 căn x phần 1 - căn x) nhân (căn x trừ 1 phần x căn x cộng 4 x + 4 căn x)
Xin lỗi em ko biết làm , em vẫn chưa lên lớp 9
1)\(\left(\frac{1}{a-\sqrt{a}}+\frac{1}{\sqrt{a}-1}\right):\frac{\sqrt{a}+1}{a-2\sqrt{a}+1}\)
\(=\left(\frac{1}{\sqrt{a}\left(\sqrt{a}-1\right)}+\frac{\sqrt{a}}{\sqrt{a}\left(\sqrt{a}-1\right)}\right)\cdot\frac{\left(\sqrt{a}-1\right)^2}{\sqrt{a}+1}\)
\(=\frac{\sqrt{a}+1}{\sqrt{a}\left(\sqrt{a}-1\right)}\cdot\frac{\left(\sqrt{a}-1\right)^2}{\sqrt{a}+1}\)
\(=\frac{\sqrt{a}-1}{\sqrt{a}}\)