Cho ba số thực a,b,b thỏa a+b+c=2011 và 1/a+1/b+1/c=1/2011. Chứng minh trong ba số a,b,c có một số bằng 2011
Cho a,b,c khác 0 và a+b+c khác 0 thỏa mãn\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=\frac{1}{a+b+c}\). Chứng minh rằng \(\frac{1}{a^{2011}}+\frac{1}{b^{2011}}+\frac{1}{c^{2011}}=\frac{1}{a^{2011}+b^{2011}+c^{2011}}\)
Cho a,b,c là ba số t/m a+b+c=1 và \(a^3+b^3+c^3=1 \). CM \(a^{2011}+b^{2011}+c^{2011}=1\)
1)giả sử các số dương a,b,c thỏa mãn \(\left(a^2+b^2+c^2\right)>2.\left(a^4+b^4+c^4\right)\)
chứng minh rằng a, b, c là độ dài ba cạnh của 1 tam giác
2)tìm các số a,b,c biết \(a^2+b^2+c^2=ab+bc+ca\) và \(a^{2011}+b^{2011}+c^{2011}=3^{2012}\)
3) 2 phân thức có .... là hai phân thức đối nhau( điền vào chỗ trống)
3) tổng bằng 0
còn câu 1,2 đâng suy nghĩ
a^2+b^2+c^2=ab+bc+ca
suy ra a^2+b^2+c^2-ab-bc-ca=0
nhân 2 cả 2 vế ta có 2a^2+2b^2+2c^2-2ab-2bc-2ac=0
a^2-2ab+b^2+b^2-2bc+c^2+a^2-2ac+c^2=0
(a-b)^2+(b-c)^2+(a-c)^2=0
suy ra a-b=0,b-c=0,a-c=0
a=b=c
a^2011+b^2011+c^2011=1^2011+1^2011+1^2011=3
đề bạn sai thì phải
3.) tổng bằng 0
cho 3 số a,b,c khác o thỏa mãn 1/a+1/b+1/c=1/(a+b+c) Tinh gtbt M=(a^3+b^3)(b^7+c^7)(a^2011+b^2011)
bạn khai thác gt ta đc : (b+c)(a+b)(a+c)=0
b=-c
a=-b
a=-1
M=(a^3+b^3)(b^7+c^7)(a^2011+|c^2011)
vì
ta có 3 trường hợp
b=-c nên (b^7+c^7=0)
a=-b nên (a^3+b^3)=0
a=-1nên (a^2011+b^2011)=0
M=0
1.Cho biểu thức:A=(a^2015+b^2015+c^2015)-(a^2011+b^2011+c^2011) với a,b,c là các số nguyên dương. Chứng minh rằng A chia hết cho 30
2. Tìm tất cả các số tự nhiên n sao cho n²-14n-256 là một số chính phương.
giúp mình với các bạn nhé!
chứng minh rằng trong ba số a,b,c thỏa mãn a+b+c=2016 và 1/a+1/b+1/c=1/2016 thì trong ba số phải có một số bằng 2016
Câu hỏi của đàm anh quân lê - Toán lớp 8 - Học toán với OnlineMath
Em tham khảo cách làm tương tự!
ÁP DỤNG TÍNH CHẤT CỦA DÃY TỈ SỐ BẰNG NHAU GIẢI CÁC BÀI SAU:
1)Cho a/b = c/d. Chứng tỏ 2a-5b/3a = 2c-5d/3c
2)Cho a/b = c/d. Chứng tỏ ac/bd = a^2+c^2/b^2+d^2
3)Cho a/b = c/d. Chứng tỏ a+2011/b+2011 = c+2011/d+2011
cho ba số duong a,b,c tỏa mãn \(\sqrt{a^2+b^2}+\sqrt{b^2+c^2}+\sqrt{c^2+a^2=\sqrt{2011}}\)chứng minh rằng \(\frac{a^2}{b+c}+\frac{b^2}{c+a}+\frac{c^2}{a+b}\ge\frac{1}{2}\sqrt{\frac{2011}{2}}\)
Chứng minh rằng nếu a, b, c là ba số thỏa mãn a + b +c = 2013 và 1/a + 1/b + 1/c = 1/2013 thì phải có một trong ba số bằng 2013