Cho x+y=a và xy=b. Tính giá trị của các biểu thức sau theo a và b
a) x^4+y^4
b) x^5+y^5
Cho x+y=a và xy=b
Tính giá trị các biểu thức sau theo a và b:
a) x2+y2 b)x3+y3
Giúp mình với nha =))))
a) xy = b \(\Rightarrow\)2xy = 2b ; x + y = a \(\Rightarrow\)( x + y )2 = a2 \(\Rightarrow\)x2 + y2 + 2xy = a2 \(\Rightarrow\)x2 + y2 = a2 - 2b
b) x3 + y3 = ( x + y ) . ( x2 - xy + y2 ) = a . ( a2 - 2b - b ) = a . ( a2 - 3b ) = a3 - 3ab
Các cậu giúp mình nhé, mình sắp thi huyện rồi :
Câu 1 : Giá trị nhỏ nhất của biểu thức :
A = -x ^ 2 - 2x - 5 / x ^ 2 + 2x +2 là
Câu 2 : Cho x,y,z khác 0 và x - y - z = 0
Tính giá trị biểu thức :
B = ( 1 - z / x ) ( 1 - x/y) ( 1 + y/2 )
Câu 2 : Tìm x,y,z biết :
x - 1 / 2 = y- 2 / 3 = z - 3 /4 và 2x + 3y -z =50
Câu 3 : Tìm x,y biết :
x / y ^2 = 3 và x/ y =27
Cho các số x,y,z thỏa mãn : x^2+y^2+z^2=xy+yz+zx và x^2018 +y^2018+z^2018=3. Tính giá trị của biểu thức P=x^28+y^57+z^2017
a)Cho a + b + c = 9, a2 + b2 + c2 = 141. Tính giá trị của biểu thức M =ab + bc + ca
b) Cho x + y = 1 . Tính giá trị của biểu thức B = x3 + 3xy + y3
c) Cho x + y = a ; x2 + b2 = b ; x3 + y3 = c .Tính giá trị của biểu thức N =a3 - 3ab + 2c
d) Cho x + y = a ; x - y = b. Tính giá trị của biểu thức D = x3 - y3 theo a và b
a)Cho a + b + c = 9, a2 + b2 + c2 = 141. Tính giá trị của biểu thức M =ab + bc + ca
b) Cho x + y = 1 . Tính giá trị của biểu thức B = x3 + 3xy + y3
c) Cho x + y = a ; x2 + b2 = b ; x3 + y3 = c .Tính giá trị của biểu thức N =a3 - 3ab + 2c
d) Cho x + y = a ; x - y = b. Tính giá trị của biểu thức D = x3 - y3 theo a và b
a)a+b+c=9
=>(a+b+c)2=81
=>a2+b2+c2+2ab+2bc+2ca=81
Từ a2+b2+c2=141=>2ab+2bc+2ca=81-141=-60
=>2(ab+bc+ca)=-60=>ab+bc+ca=-30
b)x+y=1
=>(x+y)3=1
=>x3+3x2y+3xy2+y3=1
=>x3+y3+3xy(x+y)=1
=>x3+y3+3xy=1(Do x+y=1)
c)a3-3ab+2c=(x+y)3-3(x+y)(x2+y2)+2(x3+y3)
=x3+3x2y+3xy2+y3-3x3-3y3-3x2y-3xy2+2x3+2y3=0
d)đang tìm hướng giải
Bài 1 : Cho hai số x,y thỏa mãn đẳng thức :
\(\left(x+\sqrt{x^2+2011}\right)\times\left(y+\sqrt{y^2+2011}\right)=2011\)TÌm x+y .
Bài 2 : Cho x>0,y>0 và \(x+y\ge6\). Tìm giá trị nhỏ nhất của biểu thức :
\(P=3x+2y+\frac{6}{x}+\frac{8}{y}\)
Bài 3 : Cho các số thực x,a,b,c thay đổi , thỏa mạn hệ :
\(\hept{\begin{cases}x+a++b+c=7\\x^2+a^2+b^2+c^2=13\end{cases}}\)TÌm giá trị lớn nhất và nhỏ nhất của x .
Bài 4 : Cho các số dương a,b,c . Chứng minh :
\(1< \frac{a}{a+b}+\frac{b}{b+c}+\frac{c}{c+a}< 2\)
Bài 5: Cho x,y là hai số thực thỏa mãn :(x+y)2+7.(x+y)+y2+10=0 . Tìm giá trị lớn nhất và nhỏ nhất của biểu thức A=x+y+1
Bài 6: Tìm giá trị nhỏ nhất biểu thức : \(P=\frac{x^4+2x^2+2}{x^2+1}\)
Bài 7 : CHo các số dương a,b,c . Chứng minh bất đẳng thức :
\(\frac{a+b}{c}+\frac{b+c}{a}+\frac{c+a}{b}\ge4\times\left(\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}\right)\)
neu de bai bai 1 la tinh x+y thi mik lam cho
đăng từng này thì ai làm cho
We have \(P=\frac{x^4+2x^2+2}{x^2+1}\)
\(\Rightarrow P=\frac{x^4+2x^2+1+1}{x^2+1}\)
\(=\frac{\left(x^2+1\right)^2+1}{x^2+1}\)
\(=\left(x^2+1\right)+\frac{1}{x^2+1}\)
\(\ge2\sqrt{\frac{x^2+1}{x^2+1}}=2\)
(Dấu "="\(\Leftrightarrow x=0\))
Vậy \(P_{min}=2\Leftrightarrow x=0\)
a, Cho x+y=2 và x2+y2=10. Tính giá trị của biểu thức x3+y3
b, Cho x-y=a và x2+y2=b. Tính x3-y3 theo a và b
cho mk sửa lại đề chút nhoa:
b, Cho x+y=a và x2+y2=b. Tính x3+y3 theo a và b
a.Từ \(x+y=2\Rightarrow\left(x+y\right)^2=4\Rightarrow x^2+2xy+y^2=4\)
\(\Rightarrow10+2xy=4\Rightarrow xy=-3\)
Ta có \(x^3+y^3=\left(x+y\right)\left(x^2-xy+y^2\right)=2.\left[\left(x+y\right)^2-2xy-xy\right]\)
=\(2.\left[2^2-3.xy\right]=2.\left[4-3.\left(-3\right)\right]=26\)
b.Từ \(x-y=a\Rightarrow\left(x-y\right)^2=a^2\Rightarrow x^2-2xy+y^2=a^2\)
\(\Rightarrow b-2xy=a^2\Rightarrow xy=\frac{b-a^2}{2}\)
Ta có \(x^3-y^3=\left(x-y\right)\left(x^2+xy+y^2\right)=a.\left[\left(x-y\right)^2+3xy\right]\)
\(=a.\left[a^2+3.\frac{b-a^2}{2}\right]=a.\frac{2a^2+3b-3a^2}{2}=\frac{-a^3+3ab}{2}\)
b.
Theo kết quả câu a ta có
\(xy=\frac{a^2-b^2}{2}\)
\(x^3+y^3=\left(x+y\right)\left[\left(x+y\right)^2-3xy\right]\)
=\(a.\left[a^2-3.\frac{a^2-b^2}{2}\right]=a.\frac{3b^2-a^2}{2}=\frac{3ab^2-a^3}{2}\)
a) Cho x + y = a; x2 + y2 =b.Tính giá trị của biểu thức E = x3 + y3 theo a và b
b) Cho x + y =1 , xy = -1. Tính giá trị của các biểu thức x2 + y2 , x3 + y3 , (x2 - y2)2 , x6 - y6
ĐÂY NÀY:
( x +y) ^2 = a^2 => x^2 + 2xy + y^2 = a^2
=> 2xy = a^2 - ( x^2 + y^2) = a^2 -b
=> xy = a^2-b/2
Ta có E = x^3 + y^3 = ( x+ y)( x^2 - xy + y^2)
E = a ( b - a^2-b/2)
a) Cho x+y=3 và \(x^2+y^2=10\). Tính giá trị của biểu thức \(x^3+y^3\)
b) Cho x+y = a và \(x^2+y^2=b\) . Tính \(x^3+y^3\)theo a và b
a) Ta có:
x + y = 3
=> ( x + y)2 = 9
=> x2 + 2xy + y2 = 9
=> 10 + 2xy = 9
=> 2xy = 9 - 10 = -1
=> xy = -1/2
Ta có:
x3 + y3 = (x + y)(x2 - xy + y2)
= 3.(10 + 1/2) = 63/2
b) Ta có: x + y = a
=> (x + y)2 = a2
=> x2 + 2xy + y2 = a2
=> b + 2xy = a2
=> xy = (a2 - b)/2
Ta có: x3 + y3 = (x + y)(x2 + xy + y2)
= a[b + (a2 - b )/2] = ab + (a3 - b)/2.
Làm b) công thức tổng quát luôn
x+y=a => (x+y)^2 =a^2 => x^2+y^2+2xy=a^2
Thay x^2+y^2=b vào ta được:
b+2xy=a^2 => xy=(a^2-b)/2
TA có x^3+y^3 =(x+y)(x^2+y^2 -xy)= a [b+(a^2-b)/2] =ab +(a^3-ab)/2=ab/2+a^3/2