1 thêm - bớt hạng tử
x^5 + x + 1
Phân tích thành nhân tử(Phương pháp thêm bớt thêm bớt hạng tử):
a)x^4y^4+4
b)x^4y^4+64
c)x^5+x+1
x4y4 + 4
= x4y4 + 4x2y2 + 4 - 4x2y2
= (x2y2 + 2)2 - (2xy)2
= (x2y2 - 2xy + 2)(x2y2 + 2xy + 2)
x4y4 + 64
= x4y4 + 16x2y2 + 64 - 16x2y2
= (x2y2 + 8)2 - (4xy)2
= (x2y2 - 4xy + 8)(x2y2 + 4xy + 8)
x5 + x + 1
= x5 - x2 + x2 + x + 1
= x2(x3 - 1) + (x2 + x + 1)
= x2(x - 1)(x2 + x + 1) + (x2 + x + 1)
= (x2 + x + 1)[x2(x - 1) + 1]
Phân tích đa thức thành nhân tử
x^5+x+1 bằng phuong pháp thêm bớt hạng tử x^2
\(x^5+x+1\)
\(=x^5-x^2+x^2+x+1\)
\(=x^2\left(x^3-1\right)+x^2+x+1\)
\(=x^2\left(x-1\right)\left(x^2+x+1\right)+\left(x^2+x+1\right)\)
\(=\left(x^3-x\right)\left(x^2+x+1\right)+\left(x^2+x+1\right)\)
\(=\left(x^3-x+1\right)\left(x^2+x+1\right)\)
phân tích đa thức thành nhân tử bằng phương pháp thêm bớt hạng tử để xuất hiện hằng đăng thức
x^4 + x^2 +1
phân tích đa thức thành nhân tử bằng phương pháp thêm hạng tử để xuất hiện thừa số chung
x^5 - x^4 - 1
x - x^10 + x^5 + 1
x^4+x^2+1 = (x^4+2x^2+1)-x^2 = (x^2+1)^2-x^2 = (x^2-x+1).(x^2+x+1)
k mk nha
phân tích đa thức thành nhân tử bằng phương pháp thêm bớt hạng tử để xuất hiện hằng đăng thức
x^4 + x^2 +1
phân tích đa thức thành nhân tử bằng phương pháp thêm hạng tử để xuất hiện thừa số chung
x^5 - x^4 - 1
x - x^10 + x^5 + 1
x5-x4-1=x5-x3-x2-x4+x2+x+x3-x-1
=x2.(x3-x-1)-x.(x3-x-1)+(x3-x-1)
=(x3-x-1)(x2-x+1)
x^4+x^2+1 = (x^4+2x^2+1)-x^2 = (x^2+1)^2-x^2 = (x^2-x+1).(x^2+x+1)
k mk nha
Phân tích đa thức thành nhân tử
Phương Pháp thêm bớt hạng tử
x5+x+1
Ta có : x5 + x + 1
= x5 + x4 + x3 + x2 + x + 1 - x4 - x3 - x2
= (x5 + x4 + x3) + (x2 + x + 1) - (x4 + x3 + x2)
= x3(x2 + x + 1) + (x2 + x + 1) - x2(x2 + x + 1)
= (x2 + x + 1)(x3 - x2 + 1) .
Ta có : x5 + x + 1
= x5 + x4 + x3 + x2 + x + 1 - x4 - x3 - x2
= (x5 + x4 + x3) + (x2 + x + 1) - (x4 + x3 + x2)
= x3(x2 + x + 1) + (x2 + x + 1) - x2(x2 + x + 1)
= (x2 + x + 1)(x3 - x2 + 1) .
= x5 + x4 + x3 + x2 + x + 1 - x4 - x3 - x2
= (x5 + x4 + x3) + (x2 + x + 1) - (x4 + x3 + x2)
= x3(x2 + x + 1) + (x2 + x + 1) - x2(x2 + x + 1)
= (x2 + x + 1)(x3 - x2 + 1) .
phân tích đa thức thành nhân tử bằng phương pháp thêm- bớt hạng tử :
x^4 +4
A^4 + 64
x^5 + x + 1
x^5 + x - 1
x^4+4=x^4 + 4x^2 +4 - 4x^2=(x^2)^2+ 2.x^2.2+2^2 - (2x)^2 = (x^2+2)-(2x)^2 =(x^2+2-2x)(2^2+2-2x)
\(x^4+4=x^4+4x^2+4-4x^2\)
\(=\left(x^2+2\right)^2-4x^2\)
\(=\left(x^2+2-2x\right)\left(x^2+2+2x\right)\)
\(x^5+x+1=\left(x^5+x^4+x^3\right)-\left(x^4+x^3+x^2\right)+\left(x^2+x+1\right)\)
\(=x^3\left(x^2+x+1\right)-x^2\left(x^2+x+1\right)+\left(x^2+x+1\right)\)
\(=\left(x^3-x^2+1\right)\left(x^2+x+1\right)\)
phân tích đa thức thành nhân tử bằng cách thêm hoặc bớt một số hạng tử
a) x5+x+1
b) x7+x2+1
a) \(x^5+x+1=x^5+x^2-x^2+x+1\)
\(=\left(x^5-x^2\right)+\left(x^2+x+1\right)\)
\(=x^2\left(x^3-1\right)+\left(x^2+x+1\right)\)
\(=x^2\left(x-1\right)\left(x^2+x+1\right)+\left(x^2+x+1\right)\)
\(=\left(x^2+x+1\right)\left[x^2\left(x-1\right)+1\right]\)
\(=\left(x^2+x+1\right)\left(x^3-x^2+1\right)\)
b) \(x^7+x^2+1=x^7+x^2-x+x+1\)
\(=\left(x^7-x\right)+\left(x^2+x+1\right)\)
\(=x\left(x^6-1\right)+\left(x^2+x+1\right)\)
\(=x\left(x^3+1\right)\left(x^3-1\right)+\left(x^2+x+1\right)\)
\(=x\left(x^3+1\right)\left(x-1\right)\left(x^2+x+1\right)+\left(x^2+x+1\right)\)
\(=\left(x^2+x+1\right)\left[x\left(x^3+1\right)\left(x-1\right)+1\right]\)
\(=\left(x^2+x+1\right)\left(x^5+x^2+1-x^4-x\right)\)
(Nếu đúng thì k cho mìk với nhé!)
Phân tích đa thức thành nhân tử :
x5 + x4 + 1
x5 + x + 1
Chú ý : Ta có thể thêm bớt hạng tử để thành hiệu 2 bình phương
a, \(x^5+x^4+1\)
\(\Leftrightarrow x^5+x^4-x^2+\frac{1}{4}-\frac{1}{4}+x^2\)
\(\Leftrightarrow x^5+\left(x^2-\frac{1}{2}\right)^2-\frac{1}{4}+x^2\)
\(\Leftrightarrow x^2\left(x^3+1\right)+\left(x^2-\frac{1}{2}\right)^2-\frac{1}{4}\)
\(\Leftrightarrow x^2\left(x+1\right)\left(x^2-x+1\right)+\left(x^2-\frac{1}{2}+\frac{1}{2}\right)\left(x^2-\frac{1}{2}-\frac{1}{2}\right)\)
ta có :x^5 +x^4 +1=x^5-x^2 +x^4 -x +x^2 +x +1=x^2(x^3-1) +x(x^3 -1)+x^2 +x +1=x^2(x-1)(x^2+x+1)+x(x-1)(x^2 +x+1) +x^2 +x +1=(x^2 +x +1)(x^3 -x^2 +x^2 -x +1)=(x^2 +x+1)(x^3-x+1)
ta có x^5 +x +1=x^5-x^2 +x^2+x+1=x^2(x^3-1) +x^2 +x+1=x^2(x-1)(x^2+x+1)+x^2+x+1=(x^2+x+1)(x^3-x^2+1)
1. phân tích thành x tử
a, 3x2+13x+10( tách hạng tử)
b, x2-10x+21(tách hạng tử )
c, 6x2-5x+1( tách hạng tử)
2.phân tích thành x tử
a, x8+4
b, x4+182
c,x4+3x2+4( thêm bớt x2)
d, x4-72+1( thêm bớt 2x2)
a, 3x^2 + 13x + 10
= 3x^2 + 3x + 10x + 10
= 3x(x + 1) + 10(x + 1)
= (3x + 10)(x + 1)
b, x^2 - 10x + 21
= x^2 - 3x - 7x + 21
= x(x - 3) - 7(x - 3)
= (x - 7)(x - 3)
c, 6x^2 - 5x + 1
= 6x^2 - 3x - 2x + 1
= 3x(2x - 1) - (2x - 1)
= (3x - 1)(2x - 1)
Bạn đăng 1 lần nhiều bài như vậy làm người khác nản lắm đấy =) đơn giản bài rất dài mà mik cx ko chắc là bản thân mik có đc k hay ko nên phải nản vậy thôi :)
1a)\(3x^2+13x+10=3x^2+3x+10x+10\)
\(3x\left(x+1\right)+10\left(x+1\right)=\left(3x+10\right)\left(x+1\right)\)
b)\(x^2-10x+21=x^2-3x-7x+21\)
\(=x\left(x-3\right)-7\left(x-3\right)=\left(x-7\right)\left(x-3\right)\)
c)\(6x^2-5x+1=6x^2-3x-2x+1\)
\(=3x\left(2x-1\right)-\left(2x-1\right)=\left(3x-1\right)\left(2x-1\right)\)
1,
\(a,3x^2+13x+10=3x^2+3x+10x+10\)
\(=3x\left(x+1\right)+10\left(x+1\right)\)
\(=\left(x+1\right)\left(3x+10\right)\)
\(b,x^2-10x+21=x^2-7x-3x+21\)
\(=x\left(x-7\right)-3\left(x-7\right)\)
\(=\left(x-7\right)\left(x-3\right)\)
\(c,6x^2-5x+1=6x^2-2x-3x+1\)
\(=2x\left(3x-1\right)-\left(3x-1\right)\)
\(=\left(3x-1\right)\left(2x-1\right)\)
2,
\(a,x^8+4=\left(x^4\right)^2+4x^4+2^2-4x^4\)
\(=\left(x^4+2\right)^2-4x^4\)
\(=\left(x^4+2-2x^2\right)\left(x^4+2+2x^2\right)\)
\(b,x^4+18^2=\left(x^2\right)^2+36x^2+18^2-36x^2\)
\(=\left(x^2+18\right)-36x^2\)
\(=\left(x^2+18-6x\right)\left(x^2+18+6x\right)\)
\(c,x^4+3x^2+4=x^4+4x^2+4-x^2\)
\(=\left(x^2+2\right)-x^2\)
\(=\left(x^2+2-x\right)\left(x^2+2+x\right)\)
Toán Học Team