Những câu hỏi liên quan
senorita
Xem chi tiết
Dương Hoàng
Xem chi tiết
Tran Le Khanh Linh
25 tháng 7 2020 lúc 7:10

x2>=0 Dấu "=" chỉ xảy ra khi x=0

-x2 =< 0 Dấu "=" chỉ xảy ra khi x=0

*) bđt Cô-si

cho a,b không âm ta có \(\frac{a+b}{2}\le\sqrt{ab}\)(*) dấu "=" xảy ra khi a=b

tổng quát: cho n số không âm a1;a2;....;an

ta có \(\frac{a_1+a_2+....+a_n}{n}\ge\sqrt[n]{a_1\cdot a_2......a_n}\)dấu "=" xảy ra khi a1=a2=....=an

*) bđt Bunhiacopxki

cho bốn số a,b,c,d ta luôn có (ab+cd)2 =< (a2+c2)(b2+d2) dấu "=" xảy ra <=> ad=bc

tổng quát cho 2n số a1,a2,...;an; b1,b2,....,bn

ta luôn có (a1b1+a2b2+....+anbn)2 =< (a12+a22+....+an2).(b12+....+bn2)

dấu "=" xảy ra \(\frac{a_1}{b_1}=\frac{a_2}{b_2}=....=\frac{a_n}{b_n}\)

quy ước nếu mẫu bằng 0 thì tử bằng 0

(1) 2(a2+b2) >= (a+b)2 >= 4ab

(2) 3(a2+b2+c2) >= (a+b+c)2 >= 3(ab+bc+ca)

(3) \(\left(a+b\right)\left(\frac{1}{a}+\frac{1}{b}\right)\ge4\)

(4) \(\left(a+b+c\right)\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\ge9\)

Khách vãng lai đã xóa
Tran Le Khanh Linh
25 tháng 7 2020 lúc 7:21

gọi E là giao điểm của Ah và MB. xét tam giác KAH và tam giác KMB có

 \(\widehat{AKH}=\widehat{MKB}\left(=90^0\right)\)

\(\widehat{KAM}=\widehat{KMB}\)(2 góc cùng phụ góc AMN)

do đó tam giác KAH ~ tam giác KMB => \(\frac{KH}{KB}=\frac{AK}{BM}\Rightarrow KH\cdot KM=AK\cdot AB\)

áp dụng bđt Cô-si cho 2 số dương ta có:

\(\sqrt{AK\cdot AB}\le\frac{AK+AB}{2}\Leftrightarrow AK\cdot AB\le\frac{AB^2}{4}\)

do đó \(KH\cdot KM\le\frac{AB^2}{4};\frac{AB^2}{4}\)không đổi. dấu "=" xảy ra <=> AK=AB

vậy giá trị lớn nhất của KH.KM là \(\frac{AB^2}{4}\)khi AK=AB

Khách vãng lai đã xóa
Tran Le Khanh Linh
25 tháng 7 2020 lúc 7:25

giả sử đường tròn (O) tiếp xúc AB, AC lần lượt tại H,K

SAMN=SOAM+SOAN=\(\frac{1}{2}OH\cdot AM+\frac{1}{2}OK\cdot AN=\frac{AM+AN}{2}\)

vẽ MI _|_ AB tại I ta có AM >= MI

áp dụng bất đẳng thức Cosi cho 2 số không âm, ta có \(\frac{AM+AN}{2}\ge\sqrt{AM\cdot AN}\)

do đó \(S_{AMN}\ge\sqrt{AM\cdot AN}\ge\sqrt{MI\cdot AN};S_{AMN}=\frac{1}{2}MI\cdot AN\Rightarrow MI\cdot AN=2S_{AMN}\)

vậy \(S_{AMN}\ge\sqrt{2S_{AMN}}\Leftrightarrow S^2_{AMN}\ge2S_{AMN}\Leftrightarrow S_{AMN}\ge2\)(do SAMN >0)

AM=AN=MI, tức là \(\widehat{BAC}=90^o\)và AM=AN thì SAMN=2

vậy giá trị nhỏ nhất của diện tích tam giác là 2

Khách vãng lai đã xóa
Vương Hoàng Minh
Xem chi tiết
Cat Tuongg
Xem chi tiết
Thầy Tùng Dương
Xem chi tiết
HUYNHTRONGTU
30 tháng 1 2021 lúc 16:01

a) = AI2

b) điểm D như hình vẽAD=AI2/AB= constant.

 

Khách vãng lai đã xóa
Trần Thị Thu  Hương
6 tháng 2 2021 lúc 13:41

Ta có PQI = PIA ( cùng chắn PI) nên ΔAPI ~ΔAIQ(g.g)

=> AP/AI = AI/AQ =>Ap.AQ= AI^2 ( không đổi )

Giả sử đt ngoại tiếp tấm giác BPQ cắt AB tại D (D khác B)

Khi đó tam giác ADP ~ tam giác AQB =>AD/AQ = AP/AB

hay AD.AB = AP.AQ=AI^2 ( không đổi) 

Do đó điểm D là điểm cố định (đpcm)

Khách vãng lai đã xóa
Hoàng Ngọc  Uyên
18 tháng 2 2021 lúc 11:57
Khách vãng lai đã xóa
Phan Tiến Ngọc
Xem chi tiết
phan thị yến
Xem chi tiết
Lê Tuấn Tú
Xem chi tiết
Hiển Dươmg
Xem chi tiết