Giải hệ phương trình :
\(\hept{\begin{cases}4x+y=-5\\3x-2y=-12\end{cases}}\).
Giải hệ phương trình bằng phương pháp cộng
1) \(\hept{\begin{cases}2x+y=5\\3x+5y=4\end{cases}}\)
2) \(\hept{\begin{cases}x-2y=1\\3x+4y=3\end{cases}}\)
3) \(\hept{\begin{cases}x-y=3\\4x+3y=5\end{cases}}\)
4) \(\hept{\begin{cases}4x+3y=2\\2x-2y=1\end{cases}}\)
Giải hệ phương trình bằng phương pháp cộng
1) \(\hept{\begin{cases}x+y=5\\x+3y=1\end{cases}}\)
2) \(\hept{\begin{cases}3x-y=2\\x+y=6\end{cases}}\)
3) \(\hept{\begin{cases}x+2y=5\\3x-2y=3\end{cases}}\)
4) \(\hept{\begin{cases}2x-y=5\\2x+3y=1\end{cases}}\)
1) \(\left(x+3y\right)-\left(x+y\right)=1-5\)
\(2y=-4\Rightarrow y=-2\)
\(\Rightarrow x=5-\left(-2\right)=7\)( cái này mk tự nghĩ cho nhanh )
2) \(3x-y=2\Rightarrow y=3x-2\)Thay vào vế 2 =>
\(x+3x-2=6\)
\(4x=8\Rightarrow x=2\)
\(\Rightarrow y=6-2=4\)
3) \(x+2y=5\Rightarrow2y=5-x\)Thay vào vế 2
\(3x-5+x=3\)
\(4x=8\Rightarrow x=2\)
\(2y=3\Rightarrow y=\frac{3}{2}\)
4) \(2x-y=5\Rightarrow2x=5+y\)( Thay vào vế 2 )
\(5+y+3y=1\)
\(4y=-4\Rightarrow y=-1\)
\(\Rightarrow2x=4\Rightarrow x=2\)
mk làm như vậy ko biết đúng hay sai, bạn thông cảm ...
Đoán nhận số nghiệm của mỗi hệ phương trình sau, giải thích?
a) \(\hept{\begin{cases}x+y=2\\3x+3y=2\end{cases}}\) b) \(\hept{\begin{cases}3x-2y=1\\-6x+4y=0\end{cases}}\) c) \(\hept{\begin{cases}4x-4y=2\\-2x+2y=-1\end{cases}}\)
a) \(\hept{\begin{cases}x+y=2\\3x+3y=2\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}3x+3y=6\\3x+3y=2\end{cases}}\)
Dễ thấy điều trên là vô lí nên hệ phương trình không có nghiệm
b) \(\hept{\begin{cases}3x-2y=1\\-6x+4y=0\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}6x-4y=2\\6x-4y=0\end{cases}}\)
Hệ này cũng vô nghiệm
c) \(\hept{\begin{cases}4x-4y=2\\-2x+2y=-1\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}2x-2y=1\\2x-2y=1\end{cases}}\)
Hệ này có vô số nghiệm
Giải hệ phương trình
\(\hept{\begin{cases}x^2\\3x^2-3y^2+8xy+4x+2y=15\end{cases}+y^2=5}\)
giải hệ phương trình : a)\(\hept{\begin{cases}x+3y=4\\2x+5y=7\end{cases}}\)\(\hept{\begin{cases}3x+2y=1\\3x+y=2\end{cases}}\)
a) \(\hept{\begin{cases}x+3y=4\left(1\right)\\2x+5y=7\left(2\right)\end{cases}}\)
Nhân cả hai vế ở phương trình (1) với 2 ta được \(2x+6y=8\)(3)
Lấy (3) - (2) ta được \(y=1\)
Từ đó suy ra x = 4 - 3 . 1 = 4 - 3 = 1
Vậy x = y = 1
b) \(\hept{\begin{cases}3x+2y=1\left(1\right)\\3x+y=2\left(2\right)\end{cases}}\)
Lấy (1) - (2) suy ra y = -1
Từ đó suy ra \(x=\frac{1+2}{3}=1\)
Vậy y = -1 và x = 1
Giải hệ phương trình sau
\(\hept{\begin{cases}3x+5y=34\\4x-5y=-13\\5x-2y=5\end{cases}}\)
Cộng vế hai biểu thức ta đc \(7x=21\)=> x =3
thay vào ta tìm đc y=5
_Kudo_
giải hệ phương trình
a) \(\hept{\begin{cases}\frac{9x}{7}-\frac{2y}{3}=-28\\\frac{3x}{2}+\frac{12y}{5}=15\end{cases}}\)
b)\(\hept{\begin{cases}x+y=\frac{4x-3}{5}\\x+3y=\frac{15-9y}{14}\end{cases}}\)
\(a,hpt\Leftrightarrow\hept{\begin{cases}\frac{9x}{7}-\frac{2y}{3}=-28\\\frac{3x}{2}+\frac{12y}{5}=15\end{cases}}\)\(\Leftrightarrow\hept{\begin{cases}27x-14y=-588\\15x+24y=150\end{cases}\Leftrightarrow}\hept{\begin{cases}9x-\frac{14}{3}y=-196\\5x+8y=50\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}45x-\frac{70}{3}y=-980\\45x+72y=450\end{cases}\Leftrightarrow\hept{\begin{cases}\frac{286}{3}y=1430\\45x+72y=450\end{cases}}}\)
\(\Rightarrow\hept{\begin{cases}y=15\\x=-14\end{cases}}\)
Giải hệ phương trình: a) \(\hept{\begin{cases}2x^3+3x^2y=5\\y^3+6xy^2=7\end{cases}}\)
b) \(\hept{\begin{cases}2y\left(x^2-y^2\right)=3x\\x\left(x^2+y^2\right)=10y\end{cases}}\)
giải hệ phương trình
\(\hept{\begin{cases}2x^2+xy+3y^2-2y-4=0\\3x^2+5y^2+4x-12=0\end{cases}}\)