Bài : Tính hợp lý
\(\frac{1}{2}\sqrt{64}+20\sqrt{0,01}-\sqrt{49}-16.\sqrt{\frac{0,36}{4,62}}\)
Bài 1 : Tính hợp lý
\(\sqrt{0,36}:\sqrt{\frac{25}{16}}+\frac{1}{4}+\sqrt{\frac{4}{81}}:\sqrt{\frac{25}{81}}-\sqrt{\frac{1}{16}}\)
= 0,6 : 5/4 + 1/4 + 2/9 : 5/9 - 1/4
= 3/5 . 4/5 + 2/9 . 9/5
= 12/25 + 2/5
= 22/25
Thực hiện phép tính hợp lý nếu có thể
\(10.\sqrt{0,01}.\sqrt{\frac{16}{9}+3\sqrt{49}-\frac{1}{6}\sqrt{4}}\)
2. a) \(\sqrt{64}-\sqrt{16}+\sqrt{\left(-3^2\right)}\) b) \(\sqrt{121}+\sqrt{\left(-5\right)^2}-\sqrt{9}\)
c) \(\sqrt{\frac{9}{4}}-\sqrt{\frac{16}{36}}-\sqrt{49}\) d) \(\sqrt{\left(-4\right)^2}+\sqrt{\left(-5\right)^2}-\sqrt{\left(-6\right)^2}\)
1. a) 3+2=5
b) 0,5-0,1=0,4
c) 4/5-1/9=31/45
d) 2-0,6=1,4
2. a) 8-4+3=7
b) 11+5-3=13
c) 3/2-4/6-7-37/6
d) 4+5-6=3
Bài 1: Tính
a) \(\sqrt{49}+\sqrt{4}\)
b) \(\sqrt{0,25}-\sqrt{0,01}\)
c) \(\sqrt{\dfrac{16}{25}}-\sqrt{\dfrac{1}{81}}\)
d) \(\sqrt{64}-\sqrt{16}+\sqrt{\left(-3\right)^2}\)
e) \(2-\sqrt{0,36}\)
a\\(\sqrt{49}+\sqrt{4}=7+2=9\)
b\\(\sqrt{0,25}-\sqrt{0.01}=0.5-01=0.4\)
c\\(\sqrt{\dfrac{16}{25}}-\sqrt{\dfrac{1}{81}}=\dfrac{4}{5}-\dfrac{1}{9}=\dfrac{31}{45}\)
d\\(\sqrt{64}-\sqrt{16}+\sqrt{\left(-3\right)^2}=8-4+3=7\)
e\\(2-\sqrt{0,36}=2-0.6=1.4\)
a) \(\sqrt{49}+\sqrt{4}=7+2=9\)
b) \(\sqrt{0,25}-\sqrt{0,01}=0,5-0,1=0,4\)
c) \(\sqrt{\dfrac{16}{25}}-\sqrt{\dfrac{1}{81}}=\dfrac{4}{5}-\dfrac{1}{9}=\dfrac{31}{45}\)
d) \(\sqrt{64}-\sqrt{16}+\sqrt{\left(-3\right)^2}=8-4+3=4+3=7\)
e) \(2-\sqrt{0,36}=2-\dfrac{3}{5}=\dfrac{10}{5}-\dfrac{3}{5}=\dfrac{7}{5}\)
Tính
a) \(2\sqrt{\frac{25}{16}}-3\sqrt{\frac{49}{36}}+4\sqrt{\frac{81}{64}}\)
b) \(\left(3\sqrt{2}\right)^2-\left(4\sqrt{\frac{1}{2}}\right)^2+\frac{1}{16}.\left(\sqrt{\frac{3}{4}}\right)^2\)
c) \(\frac{2}{3}\sqrt{\frac{81}{16}}-\frac{3}{4}\sqrt{\frac{64}{9}}+\frac{7}{5}.\sqrt{\frac{25}{196}}\)
a) = \(\frac{7}{2}\)
b) = \(\frac{643}{64}\)
c) = 0
\(10.\sqrt{0,01.}\sqrt{\frac{16}{9}}+3\sqrt{49}-\frac{1}{6}\sqrt{4}\)
1) Rút gọn biểu thức theo là cách hợp lý:
A = \(\frac{1-\frac{1}{\sqrt{49}}+\frac{1}{49}-\frac{1}{\left(7\sqrt{7}\right)^2}}{\frac{\sqrt{64}}{2}-\frac{4}{7}+\left(\frac{2}{7}\right)^2-\frac{4}{343}}\)
2) Tính hợp lý:
M = \(1-\frac{5}{\sqrt{196}}-\frac{5}{\left(2\sqrt{21}\right)^2}-\frac{\sqrt{25}}{204}-\frac{\left(\sqrt{5}\right)^2}{374}\)
3) Có hay không giá trị của x thỏa mãn điều kiện sau:
\(2002.\sqrt{\left(1+x\right)^2}+2003.\sqrt{\left(1-x\right)^2}=0\)
4) Tìm các số x, y, z thỏa mãn đẳng thức:
\(\sqrt{\left(x-\sqrt{2}\right)^2}+\sqrt{\left(y+\sqrt{2}\right)^2}+\left|x+y+z\right|=0\)
4) mấy bài kia trình bày dài lắm!! (lười ý mà ahihi)
\(\sqrt{\left(x-\sqrt{2}\right)^2}+\sqrt{\left(y+\sqrt{2}\right)^2}+|x+y+z|=0.\)
\(\Leftrightarrow|x-\sqrt{2}|+|y+\sqrt{2}|+|x+y+z|=0\)
\(\Leftrightarrow\orbr{\begin{cases}x-\sqrt{2}=0\\y+\sqrt{2}=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=\sqrt{2}\\y=-\sqrt{2}\end{cases}}}\)
Tìm z thì dễ rồi
tính (-2)^2+\(\sqrt{\left(\frac{36}{49}\right)-\sqrt{16}+\sqrt{\left(\frac{64}{-2}\right)}}\)
\(10.\sqrt{0,01}.\sqrt{\frac{16}{9}}+3\sqrt{49}-\frac{1}{6}\sqrt{4}\)