Những câu hỏi liên quan
Thy Lê
Xem chi tiết
trần đức thịnh
Xem chi tiết
Nguyễn Phương Uyên
19 tháng 2 2020 lúc 10:54

\(A=\frac{1}{1\cdot2}+\frac{1}{3\cdot4}+\frac{1}{5\cdot6}+...+\frac{1}{99\cdot100}\)

\(A=1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+\frac{1}{5}-\frac{1}{6}+...+\frac{1}{99}-\frac{1}{100}\)

\(A=\left(1+\frac{1}{3}+\frac{1}{5}+...+\frac{1}{99}\right)-\left(\frac{1}{2}+\frac{1}{4}+\frac{1}{6}+...+\frac{1}{100}\right)\)

\(A=\left(1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{100}\right)-2\left(\frac{1}{2}+\frac{1}{4}+\frac{1}{6}+...+\frac{1}{100}\right)\)

\(A=1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{100}-1-\frac{1}{2}-\frac{1}{3}-...-\frac{1}{50}\)

\(A=\frac{1}{51}+\frac{1}{52}+\frac{1}{53}+...+\frac{1}{100}\) 

Bình luận (0)
 Khách vãng lai đã xóa
trần đức thịnh
21 tháng 2 2020 lúc 14:44

Cảm ơn bạn Uyên nhiều nha!

^_^^_^^_^

Bình luận (0)
 Khách vãng lai đã xóa
Lê Xuân Đạt
Xem chi tiết
☆☆《Thiên Phi 》☆☆
Xem chi tiết
Mike
26 tháng 5 2019 lúc 21:46

đặt A = 1/1*2 +  1/3*4 + 1/5*6 + ... + 1/99*100

= 1 - 1/2 + 1/3 - 1/4 + 1/5 - 1/6 + ... + 1/99 - 1/100

= (1 + 1/3 + 1/5 + ... + 1/99) - (1/2 + 1/4 + 1/6 + ... + 1/100)

= 1 + 1/2 + 1/3 + ... + 1/100 - 2(1/2 + 1/4 + 1/6 + .... + 1/100)

= 1 + 1/2 + 1/3 + ... + 1/100 - 1 - 1/2 - 13 - ... - 1/50

= 1/51 + 1/52 + 1/53 + ... + 1/100

thay vào ra E = 1

Bình luận (0)
Lê Tài Bảo Châu
26 tháng 5 2019 lúc 21:49

Biến đổi mẫu ta được:

\(\frac{1}{1.2}+\frac{1}{3.4}+...+\frac{1}{99.100}\)

\(=1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{99}-\frac{1}{100}\)

\(=\left(1+\frac{1}{3}+...+\frac{1}{99}\right)-\left(\frac{1}{2}+\frac{1}{4}+...+\frac{1}{100}\right)\)

\(=\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{99}+\frac{1}{100}\right)-2.\left(\frac{1}{2}+\frac{1}{4}+...+\frac{1}{100}\right)\)

\(=\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{99}+\frac{1}{100}\right)-\left(1+\frac{1}{2}+...+\frac{1}{50}\right)\)

\(=\frac{1}{51}+\frac{1}{52}+...+\frac{1}{100}\)

\(\Rightarrow E=\frac{\frac{1}{51}+\frac{1}{52}+...+\frac{1}{100}}{\frac{1}{51}+\frac{1}{52}+...+\frac{1}{100}}=1\)

Bình luận (0)
Kiệt Nguyễn
26 tháng 5 2019 lúc 22:10

Đặt \(P=\frac{1}{51}+\frac{1}{52}+\frac{1}{53}+...+\frac{1}{100}\)

\(\Rightarrow P=1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{100}-\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{50}\right)\)\(\Rightarrow P=1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{100}-2\left(\frac{1}{2}+\frac{1}{4}+\frac{1}{6}+...+\frac{1}{100}\right)\)

\(\Rightarrow P=1+\frac{1}{3}+\frac{1}{5}+...+\frac{1}{99}-\left(\frac{1}{2}+\frac{1}{4}+\frac{1}{6}+...+\frac{1}{100}\right)\)

\(\Rightarrow P=1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{99}-\frac{1}{100}\)

\(\Rightarrow P=\frac{1}{1.2}+\frac{1}{3.4}+...+\frac{1}{99.100}\)

Vậy E = 1

Bình luận (0)
Trương Mỹ Hoa
Xem chi tiết
Anh hùng nhỏ
22 tháng 7 2018 lúc 15:42

tí mình giải bây giơ mình di có việc

Bình luận (0)
Trương Mỹ Hoa
24 tháng 7 2018 lúc 17:59

Bn giải giúp mik đi

Bình luận (0)
Con Ma
11 tháng 9 2018 lúc 10:58

Mk giải được nhưng lâu lắm bạn ơi! HUHU

Bình luận (0)
iceboy
Xem chi tiết
Hoàng Diệu Quỳnh
27 tháng 12 2017 lúc 20:55

cô trang dạy rồi mà

Bình luận (0)
nguyen thu phuong
25 tháng 1 2018 lúc 21:47

Khó kinh .."

Bình luận (0)
Phạm Tuấn Đạt
3 tháng 3 2018 lúc 21:08

Gọi \(Q=\frac{1}{1.2}+\frac{1}{3.4}+\frac{1}{5.6}+...+\frac{1}{99.100}\)

\(\Rightarrow Q=1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{99}-\frac{1}{100}\)

\(\Rightarrow Q=\left(1+\frac{1}{3}+\frac{1}{5}+...+\frac{1}{99}\right)-\left(\frac{1}{2}+\frac{1}{4}+...+\frac{1}{100}\right)\)

\(\Rightarrow Q=\left(1+\frac{1}{3}+\frac{1}{5}+...+\frac{1}{99}\right)-2\left(1+\frac{1}{2}+...+\frac{1}{50}\right)\)

\(\Rightarrow Q=\frac{1}{51}+\frac{1}{52}+...+\frac{1}{100}\)

\(\Rightarrow P=1\)

Bình luận (0)
Lê Xuân Đạt
Xem chi tiết
satoshi-gekkouga
Xem chi tiết
satoshi-gekkouga
29 tháng 6 2021 lúc 17:14

Ai giúp đi, làm ơnnnnnnnnnnnnnnnnnnn

Bình luận (0)
 Khách vãng lai đã xóa
Nguyễn Đức Chung
29 tháng 6 2021 lúc 17:19

\(B=1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{99}-\frac{1}{100}\)

\(B=1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{100}-2.\left(\frac{1}{2}+\frac{1}{4}+...+\frac{1}{100}\right)\)

\(B=1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{100}-\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{50}\right)\)

\(B=\frac{1}{51}+\frac{1}{52}+...+\frac{1}{100}\)

\(B< \frac{1}{60}+\frac{1}{60}+...+\frac{1}{60}\)

\(B< \frac{50}{60}\Leftrightarrow B< \frac{5}{6}\)

Bình luận (0)
 Khách vãng lai đã xóa
Hoang Nghia Thien Dat
Xem chi tiết
UcHihA SaSUkE
15 tháng 3 2016 lúc 15:35

Tính $E=\frac{\frac{1}{51}+\frac{1}{52}+\frac{1}{53}+....+\frac{1}{100}}{\frac{1}{1.2}+\frac{1}{3.4}+\frac{1}{5.6}+..+\frac{1}{99.100}}$E=151 +152 +153 +....+1100 11.2 +13.4 +15.6 +..+199.100  

Toán lớp 6

Bình luận (0)
Tôi thích hoa hồng
15 tháng 3 2016 lúc 15:43

Rút gọn mẫu ta được:

\(\frac{1}{51}+\frac{1}{52}+\frac{1}{53}+....+\frac{1}{100}\)

Vì tử và mẫu bằng nhau nên biểu thức bằng 1

Bạn muốn biết cách rút gọn mẫu thì gửi tin nhắn cho mình

Bình luận (0)