Những câu hỏi liên quan
Nguyễn Minh Vũ
Xem chi tiết
Nguyễn Bảo Long
3 tháng 1 2018 lúc 15:53

Ek bạn , bạn có chơi nr ko

Bình luận (0)
Nguyễn Minh Vũ
3 tháng 1 2018 lúc 15:51

kb nha minh t i c k nha

Bình luận (0)
Bui Huu Manh
3 tháng 1 2018 lúc 17:05

Trả lời kiểu gì zậy

Bình luận (0)
TrầnHoàngGiang
Xem chi tiết
nguyen duy
Xem chi tiết
Erika Alexandra
Xem chi tiết
Khiêm Nguyễn Gia
Xem chi tiết
Phạm Ngọc Tấn
3 tháng 8 2023 lúc 11:34

Để chứng minh rằng √(a-b) và √(3a+3b+1) là các số chính phương, ta sẽ điều chỉnh phương trình ban đầu để tìm mối liên hệ giữa các biểu thức này. Phương trình ban đầu: 2^(2+a) = 3^(2+b) Ta có thể viết lại phương trình theo dạng: (2^2)^((1/2)+a/2) = (3^2)^((1/2)+b/2) Simplifying the exponents, we get: 4^(1/2)*4^(a/2) = 9^(1/2)*9^(b/2) Taking square roots of both sides, we have: √4*√(4^a) = √9*√(9^b) Simplifying further, we obtain: 22*(√(4^a)) = 32*(√(9^b)) Since (√x)^y is equal to x^(y/), we can rewrite the equation as follows: 22*(4^a)/ = 32*(9^b)/ Now let's examine the expressions inside the square roots: √(a-b) can be written as (√((22*(4^a))/ - (32*(9^b))/)) Similarly, √(3*a + 3*b + ) can be written as (√((22*(4^a))/ + (32*(9^b))/)) We can see that both expressions are in the form of a difference and sum of two squares. Therefore, it follows that both √(a-b) and √(3*a + 3*b + ) are perfect squares.

Bình luận (0)
Linhhhhhh
Xem chi tiết
Anh Lê Đức
Xem chi tiết
thần giao cách cảm
19 tháng 9 2016 lúc 23:23

thtfgfgfghggggggggggggggggggggg

Bình luận (0)
Trung Nguyen
Xem chi tiết
ZerosOfGamer
2 tháng 4 2018 lúc 22:42

  zdvdz

Bình luận (0)
inuyasha
Xem chi tiết