CMR: với mọi m khác 1 và -1 thì hệ phương trình luôn có nghiệm duy nhất:
\(\hept{\begin{cases}x+my=2\\mx+y=m+1\end{cases}}\)
1. Cho hệ pt: \(\hept{\begin{cases}x-my=1\\mx+y=1\end{cases}}\)
Chứng tỏ rằng hệ phương trình trên luôn có nghiệm duy nhất (x;y) với mọi nghiệm đó theo m.
\(\hept{\begin{cases}x-my=1\\mx+y=1\end{cases}}\)
<=> \(\hept{\begin{cases}mx-m^2y=m\\mx+y=1\end{cases}}\)
<=> \(\hept{\begin{cases}x-my=1\\\left(1+m^2\right)y=1-m\end{cases}}\)
<=> \(\hept{\begin{cases}x=1+my\\y=\frac{1-m}{m^2+1}\end{cases}}\)
<=> \(\hept{\begin{cases}x=1+m.\frac{1-m}{m^2+1}=\frac{1+m}{m^2+1}\\y=\frac{1-m}{m^2+1}\end{cases}}\)
Vậy với mọi m hệ luôn có nghiệm duy nhất.
Cho hệ phương trình: \(\hept{\begin{cases}x-my=2\\mx+2y=1\end{cases}}\)
Chứng minh hệ phương trình luôn có nghiệm duy nhất (x; y) với mọi tham số m
\(\hept{\begin{cases}x-my=2\left(1\right)\\mx+2y=1\left(2\right)\end{cases}}\)
Từ (1)\(\Rightarrow x=2+my\)(3)
Thế (3) vào (2) ta được:
\(m\left(2+my\right)+2y=1\)
\(\Rightarrow2m+m^2y+2y=1\)
\(\Rightarrow y\left(m^2+2\right)=1-2m\)
Hệ phương trình có nghiệm duy nhất \(\Leftrightarrow m^2+2\ne0\)
\(\Leftrightarrow m^2\ne-2\)(luôn đúng)
Vậy hệ phương trình luôn có nghiệm duy nhất với mọi tham số m
Cho hệ phương trình
\(\hept{\begin{cases}mx+3y=1\\my-2x=5\end{cases}}\)
CMR phương trình có nghiệm duy nhất với mọi m
Hệ phương trình có nghiệm duy nhất khi \(\frac{3}{m}\ne\frac{m}{-1}\)
\(\Leftrightarrow m^2\ne-3\forall m\)
Vậy hpt luôn có nguyên duy nhất với mọi m
bảo ngọc đàm đg
\(\hept{\begin{cases}mx+\left(m+1\right)y=1\\\left(m+1\right)x-my=8m+3\end{cases}}\)
Chứng tỏ hệ phương trình luôn có nghiệm duy nhất (x;y)
Cho hệ phương trình với m là tham số
\(\hept{\begin{cases}mx+3y=1\\my-2x=5\end{cases}}\)
CMR hệ có nghiệm duy nhất với mọi giá trị của m
bài 1: Trong buổi lao động, 15 học sinh nam và nữ đã trồng được tất cả 180 cây. Biết rằng số cây các bạn nam trồng được số cây các bạn nữ trồng và mỗi bạn nam trồng nhiều hơn mỗi bạn nữ là 5 cây. Tính số bạn nam và nữ
bài 2:
1. Cho hệ phương trình \(\hept{\begin{cases}ax-y=2\\x+ay=3\end{cases}}\)
a) tìm a để hệ phương trình có nghiệm duy nhất và tìm nghiệm đó
b) tìm a để hệ phương trình vô nghiệm
2. cho hệ phương trình \(\hept{\begin{cases}ax-2y=a\\-2x+y=a+1\end{cases}}\)
a) tìm a để hệ phương trình có nghiệm duy nhất, khi đó tính x;y theo a
b) tìm a để hệ phương trình có nghiệm duy nhất thỏa mãn: x-y=1
c) tìm a để hệ phương trình có nghiệm duy nhất thỏa mãn x và y là các số nguyên
bài 3:
1.Chứng minh với mọi giá trị của m thì hệ phương trình \(\hept{\begin{cases}\left(m-1\right)x+y=2\\mx+y=m+1\end{cases}}\)(m là tham số) luôn có nghiệm duy nhất (x;y) thỏa mãn: \(2x+y\le3\)
2. Xác định giá trị của m để hệ phương trình \(\hept{\begin{cases}mx+5y=3\\x-3y=5\end{cases}}\)vô nghiệm
Cho hệ phương trình
\(\hept{\begin{cases}mx+\left(m+1\right)y=1\\\left(m+1\right)x-my=8m+3\end{cases}}\)
Chứng minh rằng hệ luôn có nghiệm duy nhất (x;y)
Cho hệ phương trình
\(\hept{\begin{cases}mx+y=m+1\\4x+my=2\end{cases}}\)
m là tham số
m khác 2 và -2
Chứng minh rằng hệ phương trình có nghiệm duy nhất với m khác 2 và -2
Giúp mình với, mình đang cần gấp :))
1) Cho hệ phương trình \(\hept{\begin{cases}\text{mx-y = 2m+1 }\\3x+2y=2m+7\end{cases}}\)
a) Giải và biện luận hệ pt.
b) Tìm m để hệ có nghiệm duy nhất x+y>0
2) Cho hệ phương trình \(\hept{\begin{cases}2x-y=m-1\\3x+y=4m+1\end{cases}}\)
Tìm m để hệ có nghiệm duy nhất x+y>1
3) Cho hệ phương trình \(\hept{\begin{cases}x-2y=4-m\\2x+y=8+3m\end{cases}}\)
a) Giải và biện luận hệ phương trình.
b) Tìm m để hệ có nghiệm duy nhất thỏa man x2 + y2 đạt GTNN