Tìm các số nguyên dương x , y thỏa mãn :
\(x^2-6xy+13y^2=100\)
\(2x^2+4x=19-3y^2\)
Giair phương trình sau : \(\frac{x+2}{13}+\frac{2x+45}{15}=\frac{3x+8}{37}+\frac{4x+69}{9}\)
Tìm tất cả các số nguyên dương x,y thỏa mãn phương trình
x2-100=6xy-13y2
Ta có \(\frac{x+2}{13}+\frac{2x+45}{15}=\frac{3x+8}{37}+\frac{4x+69}{9}\)
\(\Leftrightarrow\left(\frac{x+2}{13}+1\right)+\left(\frac{2x+45}{15}-1\right)=\left(\frac{3x+8}{37}+1\right)+\left(\frac{4x+69}{9}-1\right)\)
\(\Leftrightarrow\frac{x+15}{13}+\frac{2\left(x+15\right)}{15}=\frac{3\left(x+15\right)}{37}+\frac{4\left(x+15\right)}{9}\)
\(\Leftrightarrow\left(x+15\right)\left(\frac{1}{13}+\frac{2}{15}-\frac{3}{37}-\frac{4}{9}\right)=0\Leftrightarrow x+15=0\)vì \(\left(\frac{1}{13}+\frac{2}{15}-\frac{3}{37}-\frac{4}{9}\right)\ne0\)
\(\Leftrightarrow x=-15\)
Vậy \(x=-15\)
giải pt: (x-20)+(x-19)+......+100+101=101
1/ tìm các số nguyên x,y thỏa mãn :x2-6xy+13y2=100
2/ tìm giá trị lớn nhất của biểu thức:1-3x-2x2
Đặt A=x^2-6xy+13y^2=100
Biến đổi A ta được A=(x-3y)^2 + (2y)^2 =100
Do 100=6^2 + 8^2 suy ra hoặc x-3y =6 và 2y = 8 hoặc x-3y=8 và 2y=6
giải ra ta được (x;y)={(18;4);(17;3)}
Đặt A=1-3x-2x^2 =-(2x^2+3X-1)
biến đổi A ta được A= -1/2 - 2(x+3/2) =< -1/2
Dấu = xảy ra <=> x=-3/2
Vậy biểu thức có giá trị lớn nhất là -1/2 <=> x=-3/2
Tìm các số nguyên x,y,z thỏa mãn:2x^2+4x=19-3y^2
Tìm các số nguyên x,y thỏa mãn:6xy+4x-9y-7=0
Tìm giá trị nhỏ nhất của A=x^3+y^3+xy với x,y dương thỏa mãn x+y=1
Tìm các số nguyên x,y thỏa mãn 2x^2+1/x^2+y^2/4=4 sao cho xy đạt giá trị lớn nhất
HELP !
a) \(6xy+4x-9y-7=0\)
\(\Leftrightarrow2x.\left(3y+2\right)-9y-6-1=0\)
\(\Leftrightarrow2x.\left(3y+x\right)-3.\left(3y+2\right)=1\)
\(\Leftrightarrow\left(2x-3\right).\left(3y+2\right)=1\)
Mà \(x,y\in Z\Rightarrow2x-3;3y+2\in Z\)
Tự làm típ
\(A=x^3+y^3+xy\)
\(A=\left(x+y\right)\left(x^2-xy+y^2\right)+xy\)
\(A=x^2-xy+y^2+xy\)( vì \(x+y=1\))
\(A=x^2+y^2\)
Áp dụng bất đẳng thức Bunhiakovxky ta có :
\(\left(1^2+1^2\right)\left(x^2+y^2\right)\ge\left(x\cdot1+y\cdot1\right)^2=\left(x+y\right)^2=1\)
\(\Leftrightarrow2\left(x^2+y^2\right)\ge1\)
\(\Leftrightarrow x^2+y^2\ge\frac{1}{2}\)
Hay \(x^3+y^3+xy\ge\frac{1}{2}\)
Dấu "=" xảy ra \(\Leftrightarrow x=y=\frac{1}{2}\)
Tìm các số nguyên x,y thỏa mãn \(2x^2+4x=19-3y^2\)
Bài 1: Tìm các số nguyên x,y thỏa mãn xy+2x-3y=1
Bài 2: Tìm các số nguyên dương x,y,z thỏa mãn (x+1)(y+z)=xyz+2
Bài 1: Tìm các số nguyên x,y thỏa mãn xy+2x-3y=1
Bài 2: Tìm các số nguyên dương x,y,z thỏa mãn (x+1)(y+z)=xyz+2
tìm các số nguyên dương x,y thỏa mãn : 7x^2 + 13y^2 = 1820
Ta có :
1820 = 7 . 13 . 20 nên từ 7x2 + 13y2 = 1820 suy ra x \(⋮\)13 và y \(⋮\)7
đặt x = 13k ; y = 7t ( k, t \(\in\)N* ) , từ 7x2 + 13y2 = 1820 ta có :
7 . 132 . k2 + 13 . 72 . t2 = 1820
nên : 13k2 + 7t2 = 20
suy ra : k2 = 1 ; t2 = 1 vì k,t \(\in\)N* nên k = t = 1 do đó x = 13 , y = 7
Vậy ...
Cho 3 số nguyên tố p, q, r sao cho p^q + q^p = r. Chứng minh rằng trong ba số p, q, r luôn có một số bằng 2.
tìm x,y thuộc Z thỏa mãn: x^2-6xy+13y^2=100
`x^2-6xy+13y^2=100`
`<=> (x^2-6xy+9y^2)+4y^2=100`
`<=> (x-3y)^2+4y^2=100`
Mà `100=0^2+10^2=6^2+8^2`
`=>` Chia trường hợp giải `x;y`
Kết luận: Vậy `(x;y)=(15;5),(10;0),(-15;-5),(-10;0),(18;4),(17;3),(6;4),(-1;-3),(-6;-4),(1;3),(-18;-4),(-17;-3)`