Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
mimi
Xem chi tiết
Khánh Vy
15 tháng 10 2018 lúc 13:28

Gọi A là số chính phương A = n2 (n ∈ N)

a)Xét các trường hợp:

n= 3k (k ∈ N) ⇒ A = 9k2 chia hết cho 3

n= 3k 1  (k ∈ N) A = 9k2  6k +1 chia cho 3 dư 1

Vậy số chính phương chia cho 3 chỉ có thể có số dư bằng 0 hoặc 1.

+Ta đã sử tính chia hết cho 3 và số dư trong phép chia cho 3 .

b)Xét các trường hợp

n =2k (k ∈ N) ⇒ A= 4k2, chia hết cho 4.

n= 2k+1(k ∈ N) ⇒ A = 4k2 +4k +1

= 4k(k+1)+1,

chia cho 4 dư 1(chia cho 8 cũng dư 1)

vậy số chính phương chia cho 4 chỉ có thể có số dư bằng 0 hoặc 1.

+Ta đã sử tính chia hết cho 4 và số dư trong phép chia cho 4 .

     Chú ý: Từ bài toán trên ta thấy:

-Số chính phương chẵn chia hết cho 4

-Số chính phương lẻ chia cho 4 dư 1( chia cho 8 cũng dư 1).

bạn à câu C hình như bạn viết thiếu đề

nghekcs
Xem chi tiết
Đinh Hà Duy Bách
26 tháng 3 2021 lúc 20:17

a)Chứng minh rằng nếu mỗi số trong hai số nguyên là tổng các bình phương của hai số nguyên nào đó thì tích của chúng có thể viết dưới dạng tổng hai bình phương 

b) Chứng minh rằng tổng các bình phương của không  số nguyên liên tiếp (k=3,4,5) không là số chính phương

Khách vãng lai đã xóa
Nguyễn Thị Anh Trâm
Xem chi tiết
Phạm Yến Nhi
Xem chi tiết
minh quang ly han
18 tháng 1 2018 lúc 12:50

Nếu a chia 3 dư 0 thì a2chia 3 dư 0

Nếu a chia 3 dư 1 thì a2 chia 3 dư 1

Nếu a chia 3 dư 2 thì a2 chia 3 dư 1

=> số cp chia 3 dư 0 hoặc 1

Võ Phan Thảo Uyên
Xem chi tiết
Rider Ghost
15 tháng 2 2019 lúc 20:36

Gọi 5 số nguyên dương đã cho là K1, K2, K3, K4, K5 (phân biệt từng đôi một).Ta có : 
K1 = 2^(a1).3^(b1) 
K2 = 2^(a2).3^(b2) 
K3 = 2^(a3).3^(b3) 
K4 = 2^(a4).3^(b4) 
K5 = 2^(a5).3^(b5) 
(a1,a2,a3,... và b1,b2,b3,... đều là số tự nhiên) 
Xét 4 tập hợp sau : 
+ A là tập hợp các số có dạng 2^m.3^n (với m lẻ, n lẻ) 
+ B là tập hợp các số có dạng 2^m.3^n (với m lẻ, n chẵn) 
+ C là tập hợp các số có dạng 2^m.3^n (với m chẵn, n lẻ) 
+ D là tập hợp các số có dạng 2^m.3^n (với m chẵn, n chẵn) 
Rõ ràng trong 5 số K1, K2, K3, K4, K5 chắc chắn có ít nhất 2 số thuộc cùng 1 tập hợp ví dụ Ki và Kj 
Ki = 2^(ai).3^(bi) và Kj = 2^(aj).3^(bj) ---> Ki.Kj = 2^(ai+aj).3^(bi+bj) 
Vì Ki và Kj thuộc cùng 1 tập hợp ---> ai và aj cùng tính chẵn lẻ, bi và bj cùng tính chẵn lẻ ---> ai+aj và bi+bj đều chẵn ---> Ki.Kj = 2^(ai+aj).3^(bi+bj) là số chính phương. 

Trịnh Như Ngọc
Xem chi tiết
Đặng Ngọc Quỳnh
22 tháng 9 2020 lúc 18:09

Cách 1: 

Số trong 5 số có dạng 2x.3y trong đó x,y là số tự nhiên khác 0.

(x;y) chỉ có thể (C;C); (L;L); (C;L); (L;C) vì có 5 số 4 dạng nên tồn tại 2 số cùng một dạng nên tích 2 số này là số chính phương.

Cách 2:

Ta dễ dàng chứng minh được trong 3 số tự nhiên bất kỳ luôn tìm được 2 số bất kỳ mà tổng của chúng chia hết cho 2.

Vì số trong 5 số có dạng 2x.3y trong đó x,y là số tự nhiên khác 0 nên ta luôn chọn được 2 số mà tích của nó là số chính phương.

Khách vãng lai đã xóa
Nguyễn Minh Quang
Xem chi tiết
Huyền
Xem chi tiết
vu khanh ly
17 tháng 2 2015 lúc 18:39

huk mìk như pn thuj có 6 đề hsg đây nè

Huyền
18 tháng 2 2015 lúc 19:13

Mình giải đc r ^^ 

Le Thi Mai
2 tháng 10 2016 lúc 15:53

ớ câu c làm kiểu j bạn?

Bùi Hương Giang
Xem chi tiết
Đinh Tuấn Việt
23 tháng 7 2015 lúc 16:05

Ta có \(31.\left(x+2y\right)=31x+2y=5.\left(6x+11y\right)+\left(x+7y\right)\)

Do 6x + 11y chia hết cho 31 nên \(5.\left(6x+11y\right)\) chia hét cho 31.

\(\Rightarrow\) x + 7y chia hết cho 31 (đpcm).