Chứng minh rằng bình phương của một số nguyên chia cho được các số dư là 0 hoặc là 1
Please help me
Tớ sẽ tích cho 3 tick
Xin thề
a)Chứng minh rằng một số chính phương chia hết cho 3 chỉ có thể có số dư bằng 0 hoặc 1.
b) Chứng minh rằng một số chính phương chia cho 4 chỉ có thể có số dư bằng 0 hoặc 1.
c)Các số sau có là số chính phương không?
Gọi A là số chính phương A = n2 (n ∈ N)
a)Xét các trường hợp:
n= 3k (k ∈ N) ⇒ A = 9k2 chia hết cho 3
n= 3k 1 (k ∈ N) A = 9k2 6k +1 chia cho 3 dư 1
Vậy số chính phương chia cho 3 chỉ có thể có số dư bằng 0 hoặc 1.
+Ta đã sử tính chia hết cho 3 và số dư trong phép chia cho 3 .
b)Xét các trường hợp
n =2k (k ∈ N) ⇒ A= 4k2, chia hết cho 4.
n= 2k+1(k ∈ N) ⇒ A = 4k2 +4k +1
= 4k(k+1)+1,
chia cho 4 dư 1(chia cho 8 cũng dư 1)
vậy số chính phương chia cho 4 chỉ có thể có số dư bằng 0 hoặc 1.
+Ta đã sử tính chia hết cho 4 và số dư trong phép chia cho 4 .
Chú ý: Từ bài toán trên ta thấy:
-Số chính phương chẵn chia hết cho 4
-Số chính phương lẻ chia cho 4 dư 1( chia cho 8 cũng dư 1).
bạn à câu C hình như bạn viết thiếu đề
a. Chứng minh rằng nếu mỗi số trong hai số nguyên là tổng các bình phương của hai số nguyên nào đó thì tích của chúng có thể viết dưới dạng tổng hai bình phương.
b. Chứng minh rằng tổng các bình phương của k số nguyên liên tiếp (k = 3, 4, 5) không là số chính phương.
GIÚP THÌ TICK CHO
a)Chứng minh rằng nếu mỗi số trong hai số nguyên là tổng các bình phương của hai số nguyên nào đó thì tích của chúng có thể viết dưới dạng tổng hai bình phương
b) Chứng minh rằng tổng các bình phương của không số nguyên liên tiếp (k=3,4,5) không là số chính phương
1) Cho P= 1+x+x^2+....+x^10. Chứng minh rằng: xP-P = x^11-1?
2) Chứng minh rằng hiệu các bình phương của hai số nguyên liên tiếp là một số lẻ?
3) Chứng minh rằng hiệu các bình phương của hai số chẵn liên tiếp luôn chia hết cho 4?
4) Biết số tự nhiên n chia cho 8 dư 5. Khi đó n^2 chia cho 8 có dư bằng...?
5) Tìm giá trị x thỏa mãn: 4x(5x-1)+10(2-2x)=16?
6) Phân tích đa thức thành nhân tử: x^3+2x^2-11x-12?
chứng minh rằng bình phương của một số nguyên chi 3 dư 0 hoặc 1???
Nếu a chia 3 dư 0 thì a2chia 3 dư 0
Nếu a chia 3 dư 1 thì a2 chia 3 dư 1
Nếu a chia 3 dư 2 thì a2 chia 3 dư 1
=> số cp chia 3 dư 0 hoặc 1
Cho 5 số nguyên dương đôi một phân biệt sao cho chúng chỉ có các ước nguyên tố là 2 hoặc 3 . Chứng minh rằng ta luôn tìm được hai số trong các số đã cho mà tích của chúng là số chính phương
Gọi 5 số nguyên dương đã cho là K1, K2, K3, K4, K5 (phân biệt từng đôi một).Ta có :
K1 = 2^(a1).3^(b1)
K2 = 2^(a2).3^(b2)
K3 = 2^(a3).3^(b3)
K4 = 2^(a4).3^(b4)
K5 = 2^(a5).3^(b5)
(a1,a2,a3,... và b1,b2,b3,... đều là số tự nhiên)
Xét 4 tập hợp sau :
+ A là tập hợp các số có dạng 2^m.3^n (với m lẻ, n lẻ)
+ B là tập hợp các số có dạng 2^m.3^n (với m lẻ, n chẵn)
+ C là tập hợp các số có dạng 2^m.3^n (với m chẵn, n lẻ)
+ D là tập hợp các số có dạng 2^m.3^n (với m chẵn, n chẵn)
Rõ ràng trong 5 số K1, K2, K3, K4, K5 chắc chắn có ít nhất 2 số thuộc cùng 1 tập hợp ví dụ Ki và Kj
Ki = 2^(ai).3^(bi) và Kj = 2^(aj).3^(bj) ---> Ki.Kj = 2^(ai+aj).3^(bi+bj)
Vì Ki và Kj thuộc cùng 1 tập hợp ---> ai và aj cùng tính chẵn lẻ, bi và bj cùng tính chẵn lẻ ---> ai+aj và bi+bj đều chẵn ---> Ki.Kj = 2^(ai+aj).3^(bi+bj) là số chính phương.
Cho 5 số nguyên dương đôi một phân biệt sao cho chúng chỉ có các ước nguyên tố là 2 hoặc 3 . Chứng minh rằng ta luôn tìm được hai số trong các số đã cho mà tích của chúng là số chính phương
Cách 1:
Số trong 5 số có dạng 2x.3y trong đó x,y là số tự nhiên khác 0.
(x;y) chỉ có thể (C;C); (L;L); (C;L); (L;C) vì có 5 số 4 dạng nên tồn tại 2 số cùng một dạng nên tích 2 số này là số chính phương.
Cách 2:
Ta dễ dàng chứng minh được trong 3 số tự nhiên bất kỳ luôn tìm được 2 số bất kỳ mà tổng của chúng chia hết cho 2.
Vì số trong 5 số có dạng 2x.3y trong đó x,y là số tự nhiên khác 0 nên ta luôn chọn được 2 số mà tích của nó là số chính phương.
Chứng minh rằng một số chính phương khi chia cho 9 chỉ có thể có các số dư là: 0; 1; 4 hoặc 7.
a)cho a, b là các số nguyên, chứng minh rằng nếu a chia cho 13 dư 2 và b chia cho 13 dư 3 thì a^2 + b^2 chia hết cho 13
b) Cho a,b là các số nguyên . Chứng minh rằng nếu a chia cho 19 dư 3 , b chia cho 19 dư 2 thì a^2 + b^2 + ab chia hết cho 19
c) chứng minh rằng nếu tổng của hai số nguyên chia hết cho 3 thì tổng các lập phương của chúng chia hết cho 3
Cho x,y là số nguyên, chứng minh rằng 6x + 11y chia hết cho 31 khi và chỉ khi x + 7y chia hết cho 31
Các bạn giải giúp nha. Xin chân thành cảm ơn !
Mình sẽ lik-e cho các bạn. Hứa. Thề. Đảm bảo
Ta có \(31.\left(x+2y\right)=31x+2y=5.\left(6x+11y\right)+\left(x+7y\right)\)
Do 6x + 11y chia hết cho 31 nên \(5.\left(6x+11y\right)\) chia hét cho 31.
\(\Rightarrow\) x + 7y chia hết cho 31 (đpcm).