Tìm giá trị lớn nhất hoặc nhỏ nhất :
\(A=\frac{2}{x^2+3x+2}\)
Tìm giá trị nhỏ nhất hoặc lớn nhất:
a, \(\frac{1}{\left(x-2\right)^2+5}\)
câu này chỉ tìm được giá trị lớn nhất thôi
Để biểu thức trên lớn nhất thì \(\left(x-2\right)^2+5\) phải nhỏ nhất
Ta có \(\left(x-2\right)^2\ge0\)với mọi x
=> \(\left(x-2\right)^2+5\ge5\)
Vậy biểu thức trên đạt giá trị lớn nhất là 1/5
Tìm giá trị nhỏ nhất hoặc giá trị lớn nhất ( nếu có ) của các đa thức sau:
a) 4x2 - 4x + 3
b) -x2 + 2x - 3
a)4x2-4x+3
=[(2x)2-4x+1]+2
=(2x+1)2+2 \(\ge\)2 với mọi x
Vậy GTNN của 4x2-4x+3 là 2 tại
(2x+1)2+2=2
<=>(2x+1)2 =0
<=>2x+1 =0
<=>x =\(\frac{-1}{2}\)
b)-x2+2x-3
=(-x2+2x-1)-2
= -(x2-2x+1)-2
=-(x-1)2-2 \(\le\)-2
Vậy GTLN của -x2+2x-3 là -2 tại :
-(x-1)2-2=-2
<=>-(x-1)2 =0
<=>x-1 =0
<=>x =1
\(\frac{x^2-2x+1995}{x^2}\)Điều kiện \(x\ne0\)
\(=\frac{x^2-2x+1+1994}{x^2}\)
\(=\frac{\left(x-1\right)^2+1994}{x^2}\ge1994\)
\(Min_D=1994\Leftrightarrow x=1\)
Tìm giá trị nhỏ nhất hoặc lớn nhất của biểu thức sau:
a, A = [ x + 5 ] + 5
b, x2 + 17 / x2 + 7
Dấu " [ " là giá trị tuyệt đối nhé
làm
5. Tìm giá trị nhỏ nhất của B= (x+1)2 + (y+3)2+1
Ai nhanh mk tick cho
ghi rõ cách làm nha
Tìm giá trị lớn nhất hoặc nhỏ nhất
a)A=x2-6x+11
b)B=2x2+10x-1
c)C=5x-x2
\(A=x^2-6x+11=x^2-2.x.3+3^2+2\)
\(A=\left(x-3\right)^2+2\)
Vì\(\left(x-3\right)^2\ge0\)với mọi \(x\in R\)
nên \(\left(x-3\right)^2+2\ge2\)với mọi x\(x\in R\)
Vậy \(Min_A=2\)khi đó \(x=3\)
Tìm giá trị nhỏ nhất hoặc lớn nhất của biểu thức sau
B=x²+15/x²+3
Tìm giá trị lớn nhất hoặc nhỏ nhất ( nếu có )
P=3,7+|4.3-x|
Q= 5,5-|2x-1.5|
bạn ơi,cần đáp án thôi hay là cả cách giải vậy?mình biết nhưg nó mất thời gian lắm...
Cả cách giải nữa bạn nhé :) cảm ơn bạn nhiều :) giúp mình tí nha
vì |4.3-x| >=(lớn hơn hoặc bằng nhé) 0
suy ra(bạn dùg dấu mũi tên đi) 3,7+|4.3-x| >= 3,7
suy ra gtnn của P là 3,7 khi |4.3-x|=0
suy ra x=4.3=12
TÌM GIÁ TRỊ LỚN NHẤT( HOẶC GIÁ TRỊ NHỎ NHẤT)
a) A= 5x^2 - 20x + 2020
b) B= -3x^2 - 6x + 15
c) C= 9x^2 + 2x + 7
d) D= 16- 2x^2 - 8x
Mình mong các bạn có thể kiểm đáp án với mình với ạ! Mình sợ sai ... :)))
a) A = 5x2 - 20x + 2020 = 5(x2 - 4x + 4) + 2000 = 5(x - 2)2 + 2000 \(\ge\)2000 \(\forall\)x
Dấu "=" xảy ra <=> x - 2 = 0 <=> x = 2
Vậy MinA = 2000 khi x = 2+
b) B = -3x2 - 6x + 15 = -3(x2 + 2x + 1) + 18 = -3(x + 1)2 + 18 \(\le\)18 \(\forall\)x
Dấu "=" xảy ra <=> x + 1 = 0 <=> x = -1
Vậy MaxB = 18 khi x = -1
c) C = 9x2 + 2x + 7 = (9x2 + 2x + 1/9) + 62/9 = (3x + 1/3)2 + 62/9 \(\ge\)62/9 \(\forall\)x
Dấu "=" xảy ra <=> 3x + 1/3 = 0 <=> x = -1/9
Vậy MinC = 62/9 khi x = -1/9
d) D = 16 - 2x2 - 8x = -2(x2 + 4x + 4) + 24 = -2(x + 2)2 + 24 \(\le\) 24 \(\forall\)x
Dấu "=" xảy ra <=> x + 2 = 0 <=> x = -2
Vậy MaxD = 24 khi x = -2