Cho \(P\left(x\right)=x^3-a^2x+2016b\left(a,b\inℤ\right)\) và a không chia hết cho 3
Chứng minh \(p\left(x\right)⋮3,\forall x\inℤ\)
Cho A= \(\left\{x\inℤ,-2< x\le5\right\}\) , B= \(\left\{x\inℤ,-2< \left|x\right|\le5\right\}\), C =\(\left\{x\inℤ,\left|x\right|>3\right\}\)
Tìm các tập hợp : A giao B ,B giao C, C giao A
1. Cho đa thức \(f\left(x\right)=x^3-3x^2+9x+1964\). Chứng minh rằng tồn tại số nguyên \(a\) sao cho \(f\left(a\right)⋮3^{2014}\)
2. Chứng minh rằng với mọi \(a\inℤ\), phương trình \(x^4-2007x^3+\left(2006+a\right)x^2-2005x+a=0\) không thể có 2 nghiệm nguyên phân biệt.
3. Tìm tất cả các số nguyên dương \(n\) sao cho \(2^n-1|3^n-1\)
Chứng minh rằng: \(n^3+m^3⋮6\Leftrightarrow n+m⋮6\left(\forall m,n\inℤ\right)\)
Từ đó chứng minh công thức tổng quát:
\(x^3_1+x^3_2+x^3_3+......+x^3_n⋮6\Leftrightarrow x_1+x_2+x_3+......+x_n⋮6\left(x_i\inℤ,i=1;2;3;...;n\right)\)
Tìm x
\(\left(2x+1\right)⋮\left(3x+1\right)\)\(\left(x\inℕ\right)\left(x\inℤ\right)\)
\(\left(5x-2\right)⋮\left(3x+1\right)\)\(\left(x\inℕ\right)\left(x\inℤ\right)\)
\(\left(x^2+x+3\right)⋮\left(x+1\right)\)\(\left(x\inℕ\right)\)
Cho đa thức : A(x) = ax3 + bx2 + cx + d biết \(A\left(x\right)\inℤ\forall x\)
Chứng minh 6a, 2b, a + b +c, d là các số nguyên.
Chứng minh rằng: \(A=\left[n^3\left(n^2-7\right)^2-36n\right]⋮7\) với \(\forall n\inℤ\)
là tích 7 số nguyên liên tiếp nên A luôn chia hết cho 7
1. Tìm tất cả các đa thức \(P\left(x\right)\) khác đa thức 0 thỏa mãn \(P\left(2014\right)=2046\) và \(P\left(x\right)=\sqrt{P\left(x^2+1\right)-33}+32,\forall x\ge0\)
2. Tìm tất cả các đa thức \(P\left(x\right)\inℤ\left[x\right]\) bậc \(n\) thỏa mãn điều kiện sau: \(\left[P\left(2x\right)\right]^2=16P\left(x^2\right),\forall x\inℝ\)
1. Để tìm các đa thức P(x) thỏa mãn điều kiện P(2014) = 2046 và P(x) = P(x^2 + 1) - 33 + 32, ∀x ≥ 0, ta có thể sử dụng phương pháp đệ quy. Bước 1: Xác định bậc của đa thức P(x). Vì không có thông tin về bậc của đa thức, chúng ta sẽ giả sử nó là một hằng số n. Bước 2: Xây dựng công thức tổng quát cho đa thức P(x). Với bậc n đã xác định, ta có: P(x) = a_n * x^n + a_{n-1} * x^{n-1} + ... + a_0 Bước 3: Áp dụng điều kiện để tìm các hệ số a_i. Thay x = 2014 vào biểu thức và giải phương trình: P(2014) = a_n * (2014)^n + a_{n-1} * (2014)^{n-1} + ... + a_0 = 2046 Giải phương trình này để tìm các giá trị của các hệ số. Bước 4: Áp dụng công thức tái lập để tính toán các giá trị tiếp theo của P(x): P(x) = P(x^2+1)-33+32 Áp dụng công thức này lặp lại cho đến khi đạt được kết quả cuối cùng. 2. Để tìm các đa thức P(x) ∈ Z[x] bậc n thỏa mãn điều kiện [P(2x)]^2 = 16P(x^2), ∀x ∈ R, ta có thể sử dụng phương pháp đệ quy tương tự như trên. Bước 1: Xác định bậc của đa thức P(x). Giả sử bậc của P(x) là n. Bước 2: Xây dựng công thức tổng quát cho P(x): P(x) = a_n * x^n + a_{n-1} * x^{n-1} + ... + a_0 Bước 3: Áp dụng điều kiện để tìm các hệ số a_i. Thay x = 2x vào biểu thức và giải phương trình: [P(2x)]^2 = (a_n * (2x)^n + a_{n-1} * (2x)^{n-1} + ... + a_0)^2 = 16P(x^2) Giải phương trình này để tìm các giá trị của các hệ số. Bước 4: Áp dụng công thức tái lập để tính toán các giá trị tiếp theo của P(x): [P(4x)]^2 = (a_n * (4x)^n + a_{n-1} * (4x)^{n-1} + ... + a_0)^2 = 16P(x^2) Lặp lại quá trình này cho đến khi đạt được kết quả cuối cùng.
3. Cho \(A=\frac{3x-1}{x-1}\)và \(B=\frac{2x^2+x-1}{x+2}\)
a) Tìm \(x\inℤ\)để A; B là số nguyên
b) Tìm \(x\inℤ\)để A và B cùng là số nguyên
4. Thực hiện phép tính
\(A=\left(1+\frac{1}{1.3}\right)\left(1+\frac{1}{2.4}\right)\left(1+\frac{1}{3.5}\right)...\left(1+\frac{1}{2017.2019}\right)\)
\(S+\left(1-\frac{1}{2^2}\right)\left(1-\frac{1}{3^2}\right)\left(1-\frac{1}{4^2}\right)\left(1-\frac{1}{5^2}\right)\left(1-\frac{1}{6^2}\right)...\left(1-\frac{1}{99^2}\right)\)
là S =... nhé, ko phải S +...
3. a) \(đk:x\ne1;x\ne-2\)
Ta có: \(A=\frac{3x-3+2}{x-1}=\frac{3\left(x-1\right)+2}{x-1}=3+\frac{2}{x-1}\)
Để A là số nguyên thì x là số nguyên và x-1 là ước của 2 . Ta có bảng:
x-1 | 1 | -1 | 2 | -2 |
x | 2 | 0 | 3 | -1 |
Lại có: \(B=\frac{2x^2+4x-3x-6+5}{x+2}=\frac{2x\left(x+2\right)-3\left(x+2\right)+5}{x+2}=2x-3+\frac{5}{x+2}\)
Để B là số nguyên thì x là số nguyên và x+2 là ước của 5. Ta có bảng:
x+2 | 1 | -1 | 5 | -5 |
x | -1 | -3 | 3 | -7 |
b) Để A và B cùng nguyên thì \(x\in\left\{-1;3\right\}\)
Cho \(f\left(x\right)=ax^2+bx+c\left(a,b,c\inℤ,a>0\right)\) sao cho phương trình \(f\left(x\right)=0\) có 2 nghiệm phân biệt thuộc \(\left(0;1\right)\). Tìm đa thức \(f\left(x\right)\) thỏa điều kiện trên mà \(a\) nhỏ nhất.