cmr: không tồn tại x, y, z thỏa mãn x^2 + y^2 + z^2 = x.y.z - 1
cmr không tồn tại các số nguyên x,y,z thỏa mãn x^3+y^3+z^3=x+y+z+2009
CMR: không tồn tại x, y, z ϵ Q phân biệt thỏa mãn:
\(\frac{1}{\left(z-x\right)^2}\)+\(\frac{1}{\left(y-z\right)^2}\)+\(\frac{1}{\left(x-y\right)^2}\)=2018
CMR không tồn tại các số thực x,y,z thỏa mãn : \(x^2+5y^2+2x-4xy-10y+14=0\)
\(x^2+5y^2+2x-4xy-10y+14=0\)
\(\Leftrightarrow x^2+2x\left(1-2y\right)+\left(1-4y+4y^2\right)+y^2-6y+9+5=0\)
\(\Leftrightarrow\left(x+1-2y\right)^2+\left(y-3\right)^2+5=0\)
Vì \(\left(x+1-2y\right)^2\ge0;\left(y-3\right)^2\ge0\)(với mọi x,y)
nên \(\left(x+1-2y\right)^2+\left(y-3\right)^2+5\ge5\)
Vậy không tồn tại các số thực x,y thỏa mãn ĐK đề bài
cho x,y,z là các số thực thỏa mãn x^2 + y^2 + z^2 =1.
a, Tim min và max của xy + yz - xz
b,CMR ko tồn tại bộ số hữu tỉ (x,y,z) để đạt được giá trị lớn nhất và nhỏ nhất của xy+yz-xz
Cmr: không tồn tại x,y,z thoả mãn |x-y| + |y-z| + |z-x| = 2021
chứng minh rằng không tồn tại các số tự nhiên x;y;z thỏa mãn 3^x-2^y-2015^z=85
Bài 1: CMR không tồn tại các số thực x,y,z thỏa mãn
a, \(5x^2+10y^2-6xy-4x-2y+3=0\)
b, \(x^2+4y^2-z^2-2x-6z+8y+15=0\)
a) 5x2 + 10y2 - 6xy - 4x - 2y + 3
= ( x2 - 6xy + 9y2 ) + ( 4x2 - 4x + 1 ) + ( y2 - 2y + 1 ) + 1
= ( x - 3y )2 + ( 2x - 1 )2 + ( y - 1 )2 + 1
Ta có : \(\hept{\begin{cases}\left(x-3y\right)^2\\\left(2x-1\right)^2\\\left(y-1\right)^2\end{cases}}\ge0\forall x,y\Rightarrow\left(x-3y\right)^2+\left(2x-1\right)^2+\left(y-1\right)^2+1\ge1>0\forall x,y\)
=> đpcm
b) x2 + 4y2 + z2 - 2x - 6z + 8y + 15 = 0 < Sửa -z2 -> +z2 )
= ( x2 - 2x + 1 ) + ( 4y2 + 8y + 4 ) + ( z2 - 6z + 9 ) + 1
= ( x - 1 )2 + 4( y2 + 2y + 1 ) + ( z - 3 )2 + 1
= ( x - 1 )2 + 4( y + 1 )2 + ( z - 3 )2 + 1
Ta có : \(\hept{\begin{cases}\left(x-1\right)^2\ge0\forall x\\4\left(y+1\right)^2\ge0\forall y\\\left(z-3\right)^2\ge0\forall z\end{cases}}\Rightarrow\left(x-1\right)^2+4\left(y+1\right)^2+\left(z-3\right)^2+1\ge1>0\forall x,y,z\)
=> đpcm
Cho x,y,z \(\in\) N thỏa mãn x\(^2\)+y\(^2\)=z\(^2\)
CMR x.y.z :60
cho 3 số x y z thỏa mãn x^3+y^3+z^3 chia hết cho 7 hãy cmr tồn tại 1 số x y z chia hết cho 7
Ta có các nhận xét:
a2≡1(mod3)∨a2≡0(mod3)(1)a2≡1(mod3)∨a2≡0(mod3)(1)
a2≡1(mod4)∨a2≡0(mod4)(2)a2≡1(mod4)∨a2≡0(mod4)(2)
a)Giả sử trong x;y;z không có số nào chia hết cho 3.
Từ (1) nên ta có x2≡y2≡1(mod3)x2≡y2≡1(mod3)
Nên z2≡1+1≡2(mod3)z2≡1+1≡2(mod3): vô lý nên ta có đpcm.
Ta có các nhận xét:
a2≡1(mod3)∨a2≡0(mod3)(1)a2≡1(mod3)∨a2≡0(mod3)(1)
a2≡1(mod4)∨a2≡0(mod4)(2)a2≡1(mod4)∨a2≡0(mod4)(2)
a)Giả sử trong x;y;z không có số nào chia hết cho 3.
Từ (1) nên ta có x2≡y2≡1(mod3)x2≡y2≡1(mod3)
Nên z2≡1+1≡2(mod3)z2≡1+1≡2(mod3): vô lý nên ta có đpcm.
Ta có các nhận xét:
a2≡1(mod3)∨a2≡0(mod3)(1)a2≡1(mod3)∨a2≡0(mod3)(1)
a2≡1(mod4)∨a2≡0(mod4)(2)a2≡1(mod4)∨a2≡0(mod4)(2)
a)Giả sử trong x;y;z không có số nào chia hết cho 3.
Từ (1) nên ta có x2≡y2≡1(mod3)x2≡y2≡1(mod3)
Nên z2≡1+1≡2(mod3)z2≡1+1≡2(mod3): vô lý nên ta có đpcm.