Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Nick Đặt Cho Vui
Xem chi tiết
Bui Huyen
9 tháng 8 2019 lúc 20:03

\(S=\frac{a+b}{c}+\frac{b+c}{a}+\frac{c+a}{b}\)

\(S=\frac{a}{c}+\frac{b}{c}+\frac{b}{a}+\frac{c}{a}+\frac{c}{b}+\frac{a}{b}\)

Áp dụng BĐT cô si ta có:\(\frac{a}{b}+\frac{b}{a}\ge2\Leftrightarrow a^2+b^2\ge2ab\Leftrightarrow\left(a-b\right)^2\ge0\)

LÀm tương tự ta có:

\(\hept{\begin{cases}\frac{a}{b}+\frac{b}{a}\ge2\\\frac{a}{c}+\frac{c}{a}\ge2\\\frac{c}{b}+\frac{b}{c}\ge2\end{cases}}\Rightarrowđpcm\)

Vậy GTNN của S =6 khi a=b=c

ngo thuy linh
Xem chi tiết
Cô Bé Hâm Mộ Tara
20 tháng 3 2016 lúc 7:28

= 6 nha bạn

ngo thuy linh
20 tháng 3 2016 lúc 7:30

bạn giải rõ cho mình với...mình cầu xin bạn đó Nguyễn Thị Hương

kaito kid vs kudo shinic...
20 tháng 3 2016 lúc 7:38

Ta Có S = \(\frac{a+b}{c}+\frac{b+c}{a}+\frac{c+a}{b}=\frac{a}{c}+\frac{b}{c}+\frac{b}{a}+\frac{c}{a}+\frac{c}{b}+\frac{a}{b}=\left(\frac{c}{a}+\frac{a}{c}\right)+\left(\frac{b}{c}+\frac{c}{b}\right)+\left(\frac{a}{b}+\frac{b}{a}\right)\)

Vì mỗi ngoặc sẽ lớn hơn hoặc bằng 2 => s lớn hơn hoặc băng 6 (đpcm)

Vi Trung Qúy
Xem chi tiết
_Guiltykamikk_
20 tháng 3 2018 lúc 14:20

\(S=\frac{a+b}{c}+\frac{b+c}{a}+\frac{c+a}{b}.\)

\(S=\frac{a}{c}+\frac{b}{c}+\frac{b}{a}+\frac{c}{a}+\frac{c}{b}+\frac{a}{b}.\)

Áp dụng bất đẳng thức Cauchy ta có:

\(\frac{a}{c}+\frac{c}{a}\ge2\left(1\right)\)

\(\frac{b}{c}+\frac{c}{b}\ge2\left(2\right)\)

\(\frac{a}{b}+\frac{b}{a}\ge2\left(3\right)\)

Cộng (1) ; (2) và (3) ta được :

\(S=\frac{a}{b}+\frac{b}{a}+\frac{a}{c}+\frac{c}{a}+\frac{b}{c}+\frac{c}{b}\ge6\) (đpcm)

Nick Đặt Cho Vui
Xem chi tiết
Huỳnh Quang Sang
9 tháng 8 2019 lúc 22:02

\(S_1+S_2+S_3=\left[\frac{b}{a}x+\frac{c}{a}z\right]+\left[\frac{a}{b}x+\frac{c}{b}y\right]+\left[\frac{a}{c}z+\frac{b}{c}y\right]\)

\(=\left[\frac{b}{a}x+\frac{a}{b}x\right]+\left[\frac{c}{b}y+\frac{b}{c}y\right]+\left[\frac{c}{a}z+\frac{a}{c}z\right]\)

\(=\left[\frac{b}{a}+\frac{a}{b}\right]x+\left[\frac{c}{b}+\frac{b}{c}\right]y+\left[\frac{c}{a}+\frac{a}{c}\right]z\)

\(S_1+S_2+S_3\ge2x+2y+2z=2\left[x+y+z\right]=2\cdot5=10\)

Vậy : \(S_1+S_2+S_3\ge10\)

Nguyễn Thu Trang
Xem chi tiết
•  Zero  ✰  •
Xem chi tiết
I - Vy Nguyễn
30 tháng 3 2020 lúc 16:54

Ta có : \(\frac{a}{b}+\frac{b}{a}-2\)

\(=\frac{a^2}{ab}+\frac{b^2}{ab}-\frac{2ab}{ab}\)

\(=\frac{a^2+b^2-2ab}{ab}\)

\(=\frac{a^2-ab-ab+b^2}{ab}\)

\(=\frac{\left(a^2-ab\right)-\left(ab-b^2\right)}{ab}\)

\(=\frac{a\left(a-b\right)-b\left(a-b\right)}{ab}\)

\(=\frac{\left(a-b\right)\left(a-b\right)}{ab}\)

\(=\frac{\left(a-b\right)^2}{ab}\ge0\) với mọi \(a;b\inℕ^∗\)

\(\Rightarrow\frac{a}{b}+\frac{b}{a}-2\ge0\) với mọi \(a;b\inℕ^∗\)

\(\Rightarrow\frac{a}{b}+\frac{b}{a}\ge2\) với mọi \(a;b\inℕ^∗\) 

Khách vãng lai đã xóa

Ta có\(\frac{a}{b}+\frac{b}{a}-2\)

\(=\frac{a^2}{ab}+\frac{b^2}{ab}-\frac{2ab}{ab}\)

\(=\frac{a^2+b^2-2ab}{ab}\)

\(=\frac{\left(a^2-ab\right)-\left(ab-b^2\right)}{ab}\)

\(=\frac{a\left(a-b\right)-b\left(a-b\right)}{ab}\)

\(=\frac{\left(a-b\right)\left(a-b\right)}{ab}\)

\(=\frac{\left(a-b\right)^2}{ab}\ge0\text{ với mọi a;b \inℕ^∗}\)

\(\Rightarrow\frac{a}{b}+\frac{b}{a}-2\ge0\text{ với mọi a;b\inℕ^∗}\)

\(\Rightarrow\frac{a}{b}+\frac{b}{a}\ge2\text{ với mọi a;b \inℕ^∗}\)

Học tốt

Khách vãng lai đã xóa
Kochou Shinobu
Xem chi tiết
T.Anh 2K7(siêu quậy)(тoá...
30 tháng 3 2020 lúc 21:10

Ta có:Xét hiệu \(\frac{a}{b}+\frac{b}{a}-2\)

\(\Rightarrow\frac{a}{b}+\frac{b}{a}-2=\frac{a^2-2ab+b^2}{ab}=\frac{\left(a-b\right)^2}{ab}\ge0\)(Vì\(a,b\inℕ^∗\))

\(\Rightarrow\frac{a}{b}+\frac{b}{a}\ge2\)(Đấu "=" xảy ra khi và chỉ khi a=b)(đpcm)

Khách vãng lai đã xóa
Kochou Shinobu
Xem chi tiết
Nguyễn phương mai
30 tháng 3 2020 lúc 20:56

giả sử a\(\ge\)b không làm mất đi tính chất tổng quát của bài.

\(\Rightarrow\)a = m  + b [ m \(\ge\)0]

ta có :

\(\frac{a}{b}+\frac{b}{a}=\frac{b+m}{b}\)\(\frac{b}{b+m}=1+\frac{m+b}{b+m}\)\(=1+1=2\)

\(vậy\)\(\frac{a}{b}+\frac{b}{a}\ge2(ĐPCM)\)

Khách vãng lai đã xóa
vuong tuan khai
Xem chi tiết
Thanh Tùng DZ
10 tháng 12 2017 lúc 21:29

giả sử a \(\ge\)\(\Rightarrow\)a = b + m ( m \(\ge\)0 )

do đó : \(\frac{a}{b}+\frac{b}{a}=\frac{b+m}{b}+\frac{b}{b+m}\)

\(=1+\frac{m}{b}+\frac{b}{b+m}\ge1+\frac{m}{b+m}+\frac{b}{b+m}=1+\frac{m+b}{b+m}=2\)

Vậy \(\frac{a}{b}+\frac{b}{a}\ge2\)( a,b thuộc N* )

Dấu " = " xảy ra khi a = b