(x-1)2012+(y-2)2010+(x-z)2008=0
Tìm x;y;z biết
\(\left(x-1\right)^{2012}+\left(y-2\right)^{2010}+\left(x-z\right)^{2008}=0\)
VÌ \(\left(x-1\right)^{2012}\ge0\)
\(\left(y-2\right)^{2010}\ge0\)
\(\left(x-z\right)^{2008}\ge0\)
nên dấu \(=\)xảy ra khi \(\hept{\begin{cases}x=z\\x=1\\y=2\end{cases}\Leftrightarrow\hept{\begin{cases}x=z=1\\y=2\end{cases}}}\)
tìmx,y,z
[x-1]2012+[y-2]2010+[x-z]2008=0
Vì \(\left(x-1\right)^{2012}\ge0\forall x;\left(y-2\right)^{2010}\ge0\forall y;\left(x-z\right)^{2008}\ge0\forall x;z\)
Mà theo đề bài
\(\Rightarrow\hept{\begin{cases}x-1=0\\y-2=0\\x-z=0\end{cases}\Rightarrow\hept{\begin{cases}x=1\\y=2\\z=1\end{cases}}}\)
Vậy x = z = 1 và y = 2
Ta có:
\(\left(x-1\right)^{2012}\ge0\)
\(\left(y-2\right)^{2010}\ge0\)
\(\left(x-z\right)^{2008}\ge0\)
\(\Rightarrow\left(x-1\right)^{2012}+\left(y-2\right)^{2010}+\left(x-z\right)^{2008}=0\)Khi \(\hept{\begin{cases}\left(x-1\right)^{2012}=0\\\left(y-2\right)^{2010}=0\\\left(x-z\right)^{2008}=0\end{cases}}\)
Từ đó ta tính được x=1; y=2; z=1
Cho 3 số x;y;z thoả mãn x+y+z=0; -1<x;y;z<1
Tìm GTLN của P=x2008+y2010+z2012
Cho 3 số x;y;z thoả mãn x+y+z=0;-1<x;y;z<1
Tìm GTNN GTLN của P=x2008+y2010+z2012
Tìm x;y; z
a/(x-1)2012+(x-2)2010+(x-z)2008=0
b/\(\frac{x}{2}=\frac{y}{3}=\frac{z}{a}vàx^2+y^2+z^2=116\)
Tìm x y z biết
a)2012=|x-2010|+|x-2008|
b)(x-3)x-(x-3)x+2=0
\(a,2021=\left|x-2010\right|+\left|x-2008\right|\)
\(2012=x-2010+x-2008\)
\(2012=2x-4018\)
\(2x=6030\)
\(x=3015\)
ai giúp mik với mik k cho
ahihi
Tìm x y z biết
a)2012=|x-2010|+|x-2008|
b)(x-3)x-(x-3)x+2=0
mk thay đề câu a để giúp một bạn nhé. còn cách làm thì tương tự thôi.
\(2012=\left|x-2010\right|+\left|x+2008\right|\)
Với \(x< -2008\Leftrightarrow\hept{\begin{cases}\left|x-2010\right|=2010-x\\\left|x+2008\right|=-2008-x\end{cases}}\)
\(\Rightarrow2012=\left|x-2010\right|+\left|x+2008\right|\)
\(\Leftrightarrow2010-x-2008-x=2012\)
\(\Leftrightarrow2-2x=2012\)
\(\Leftrightarrow x=1006\)( loại so với điều kiện )
Với \(-2008\le x< 2010\Leftrightarrow\hept{\begin{cases}\left|x-2010\right|=2010-x\\\left|x+2008\right|=2008+x\end{cases}}\)
\(\Rightarrow2012=\left|x-2010\right|+\left|x+2008\right|\)
\(\Leftrightarrow2010-x+2008+x=2012\)
\(\Leftrightarrow4018=2012\)( vô lý )
Với \(x\ge2010\Leftrightarrow\hept{\begin{cases}\left|x-2010\right|=x-2010\\\left|x+2008\right|=2008+x\end{cases}}\)
\(\Rightarrow2012=\left|x-2010\right|+\left|x+2008\right|\)
\(\Leftrightarrow x-2010+2008+x=2012\)
\(\Leftrightarrow2x-2=2012\)
\(\Leftrightarrow x=1007\)( loại so với điều kiện )
Vậy...
Cho 3 số x y z thoả mãn x+y+z=0;-1<x;y;z<1
Tìm GTLN của P=x2008+y2010+z2012
TA CÓ \(x^{2018}+y^{2020}+z^{2012}\ge x+y+z.\)
=>\(x^{2018}+y^{2020}+z^{2012}\ge0\)
Dấu bằng xảy ra khi zà chỉ khi
\(\hept{\begin{cases}x^{2018}=0\\y^{2020}=0\\z^{2012}=0\end{cases}=>\hept{\begin{cases}x=0\\y=0\\z=0\end{cases}=>}x=y=z=0.}\)
why are you so stupid?
Có bao nhiêu bộ ba số (x;y;z) thỉa mãn đẳng thức sau:
(x2-25)2008 +(y4-16)2010+(x-z)2012=0