rút gọn
\(\frac{x^2+\sqrt{x}}{x-\sqrt{x} +1}+1-\frac{2x+\sqrt{x}}{\sqrt{x}}\) vs x>0
rút gọn: \(P=\left(\frac{2x\sqrt{x}+x-\sqrt{x}}{x\sqrt{x}-1}-\frac{x+\sqrt{x}}{x-1}\right)\times\frac{x-1}{2x+\sqrt{x}-1}+\frac{\sqrt{x}}{2\sqrt{x}-1}\)
Rút gọn biểu thức
\(P=\left(\frac{1}{1-\sqrt{x}}-\frac{1}{\sqrt{x}}\right):\left(\frac{2x+\sqrt{x}-1}{\sqrt{x}-x\sqrt{x}}+\frac{2x\sqrt{x}+x-\sqrt{x}}{\sqrt{x}+x^2}\right)\)
Rút gọn: P= \(\left(\frac{1}{1-\sqrt{2}}-\frac{1}{\sqrt{x}}\right):\left(\frac{2x+\sqrt{x}-1}{1-x}+\frac{2x\sqrt{x}+x-\sqrt{x}}{1+x\sqrt{x}}\right)\)
Rút gọn biểu thức \(\frac{\sqrt{x}}{\sqrt{x}-2}+\frac{\sqrt{x}-1}{\sqrt{x}+2}+\frac{\sqrt{x}-10}{x-4}\) (x>=0, x khác 4)
giúp mik giải vs
\(=\frac{\sqrt{x}}{\sqrt{x}-2}+\frac{\sqrt{x}-1}{\sqrt{x}+2}+\frac{\sqrt{x}-10}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}\)
\(=\frac{\sqrt{x}\left(\sqrt{x}+2\right)+\left(\sqrt{x}-1\right)\left(\sqrt{x}-2\right)+\left(\sqrt{x}-10\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}\)
\(=\frac{x+2\sqrt{x}+x-2\sqrt{x}-\sqrt{x}+2+\sqrt{x}-10}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}\)
\(=\frac{2x-8}{x-4}\)
\(=\frac{2\left(x-4\right)}{x-4}\)
\(=2\)
I .cho C= \(\frac{1}{2\sqrt{x}-2}-\frac{1}{2\sqrt{x}+2}+\frac{\sqrt{x}}{1-x}\)
a, rút gọn C
b, tính C vs x=\(\frac{4}{9}\)
c, tìm x để GTTĐ của C =\(\frac{1}{3}\)
II. cho P = \(\hept{\frac{\sqrt{x}-2}{x-1}}-\frac{\sqrt{x}+2}{x+2\sqrt{x}+1})X\frac{\left(1-x\right)^2}{2}\)
a, rút gọn P
b, chứng minh rằng nếu 0<x<1 thì P>0
III. Cho Q= \(\frac{2\sqrt{x-9}}{x-5\sqrt{x}+6}-\frac{\sqrt{x}+3}{\sqrt{x}-2}-\frac{2\sqrt{x}+1}{3-\sqrt{x}}\)
a, rút gọn Q
b, tìm các gtri x nguyên để Q có gtri nguyên
rút gọn\(\frac{x^2-\sqrt{x}}{x+\sqrt{x}+1}-\frac{2x+\sqrt{x}}{\sqrt{x}}+\frac{2\left(x-1\right)}{\sqrt{x}-1}\)
\(\frac{x^2-\sqrt{x}}{x+\sqrt{x}+1}-\frac{2x+\sqrt{x}}{\sqrt{x}}+\frac{2\left(x-1\right)}{\sqrt{x}-1}\)
\(=\frac{\sqrt{x}\left(x\sqrt{x}-1\right)}{x+\sqrt{x}+1}-\frac{\sqrt{x}\left(2\sqrt{x}+1\right)}{\sqrt{x}}+\frac{2\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}{\sqrt{x}-1}\)
\(=\frac{\sqrt{x}\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}{x+\sqrt{x}+1}-\left(2\sqrt{x}+1\right)+2\left(\sqrt{x}+1\right)\)
\(=\sqrt{x}\left(\sqrt{x}-1\right)-2\sqrt{x}-1+2\sqrt{x}+2\)
\(=x-\sqrt{x}+1\)
Cho biểu thức: \(A=\frac{x-2\sqrt{x}}{x\sqrt{x}-1}+\frac{\sqrt{x}+1}{x\sqrt{x}+x+\sqrt{x}}+\frac{1+2x-2\sqrt{x}}{x^2-\sqrt{x}}\) với \(x>0,x\ne1\)
Rút gọn biểu thức A
\(\frac{4+\sqrt{X}}{7}\)
Rút gọn: \(A=\left(\frac{1}{\sqrt{x}-\sqrt{x-1}}-\frac{x-3}{\sqrt{x-1}-\sqrt{2}}\right)\left(\frac{2}{\sqrt{2}-\sqrt{x}}-\frac{\sqrt{x}+\sqrt{2}}{\sqrt{2x}-x}\right)\)
rút gọn
p=\(\frac{x^2+\sqrt{x}}{x-\sqrt{x}+1}+1-\frac{2x+\sqrt{x}}{\sqrt{x}}\left(x>0\right)\)
\(P=\frac{\sqrt{x}\left(\sqrt{x^3}+1\right)}{x-\sqrt{x}+1}+1-\frac{\sqrt{x}\left(2\sqrt{x}+1\right)}{\sqrt{x}}=\sqrt{x}\left(\sqrt{x}+1\right)+1-2\sqrt{x}-1\)\(=x+\sqrt{x}-2\sqrt{x}=x-\sqrt{x}\)
Tìm x biết \(x^2+14x-5x\sqrt{x}-153\sqrt{x}+452=0\)bạn giúp mình với