Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Minh Ngọc
Xem chi tiết
Bùi Thùy Linh
Xem chi tiết
helloa4
Xem chi tiết
Đào Đình Phong
22 tháng 11 2021 lúc 10:29

sssssssssssss

Khách vãng lai đã xóa
helloa4
Xem chi tiết
o0o đồ khùng o0o
5 tháng 1 2017 lúc 9:11

1 giải

Ta có 17 chia hết cho 17

suy ra 17a+3a+b chia hết cho 17

suy ra 20a+2b chia hết cho 17

rút gọn cho 2

suy ra 10a+b chia hét cho 17 

2 giải

* nếu a-5b chia hết cho 17 thì 10a + b chia hết cho 17

vì a-5b chia hết cho 17 nên 10(a-5b) chia hết cho 17 => 10a-50b chia hết cho 17 => 10a-50b+51b chia hết cho 17 hay 10a + b chia hết cho 17 (1) *

nếu 10a + b chia hết cho 17 thì a-5b chia hết cho 17

vì 10a+b chia hết cho 17 nên 10a + b - 51b chia hết cho 17 => 10a - 50b chia hết cho 17 => 10(a-5) chia hết cho 17 mà (10;17)=1 nên a-5b chia hết cho 17 (2)

Từ (1) và (2) suy ra điều phải chứng minh

3 bó tay

nguyenvankhoi196a
6 tháng 11 2017 lúc 6:27

Câu trả lời hay nhất:  + ta chứng minh a,b,c có ít nhất một số chia hết cho 3 
giả sử cả 3 số trên đều không chia hết cho 3 
=> a^2 = 1 (mod3) và b^2 = 1 (mod3) (bình phương 1 số chia hết cho 3 hoạc chia 3 dư 1) 
=> a^2 + b^2 = 2 (mod3) nhưng c^2 = 1 (mod3) => mâu thuẫn 
Vậy có ít nhất 1 số chia hết cho 3 
+ tương tự,có ít nhất 1 số chia hết cho 4,vì giả sử cả 3 số a,b,c đều không chia hết cho 4 
=> a^2 = 1 (mod4) và b^2 = 1 (mod4) => a^2 + b^2 = 2 (mod 4) nhưng c^2 = 1 (mod 4) => mâu thuẫn 
vậy có ít nhất 1 số cgia hết cho 4 
+ tương tự a^2 = 1 (mod 5) hoạc a^2 = -1 (mod 5) hoạc a^2 = 4 (mod 5) 
và -1 + 1 = 0,1 + 4 = 5,-1 + 4 = 3 
=> phải có ít nhất 1 số chia hết cho 5 
Vậy abc chia hết cho BCNN(3,4,5) = 60 hay abc chia hết 60

To Thi Bich Thao
29 tháng 7 2019 lúc 22:09

gbvn nngvjn

Đạt Skull
Xem chi tiết
Eihwaz
7 tháng 5 2017 lúc 11:14

xét hiệu A=5(3x-5y)-3(5x-16y)=23y

=> A  chia hết cho 23,mà 3x-5y chia hết cho 23=>3(5x-16y) chia hết cho 23

Mà (3;23)=1=>5x-16y chia hết cho 23(đpcm) 

Thảo Phùng
Xem chi tiết
ntkhai0708
25 tháng 3 2021 lúc 20:49

Xét hiệu của $14.(2x-5y)-(5x-y)$

$=28x-70y-5x+y$

$=23x-69y$

$=23.(x-3y)$

Mà $23 \vdots 23$ nên $23(x-3y) \vdots 23$

suy ra $14.(2x-5y)-(5x-y) \vdots 23$

Lại có: $2x-5y \vdots 23$ nên $14(2x-5y) \vdots 23$ 

Từ điều trên suy ra $5x-y \vdots 23 (đpcm)$

Ví dụ tương tự chứng minh $x-2y \vdots 37$ thì $35x-70y \vdots 37$

Park Bảo Linh
Xem chi tiết
Nguyễn Ngọc Anh Minh
30 tháng 6 2020 lúc 8:33

Đề bài sai. C/m 28x-16y chia hết cho 23 mới đúng

3x-5y chia hết cho 23 => 6(3x-5y)=18x-30y chia hết cho 23

28x-16y+18x-30y=46x-46y chia hết cho 23 nên 28x-16y chia hết cho 23

Khách vãng lai đã xóa
Nguyễn Duy Thanh Tùng
Xem chi tiết
Nguyễn Thị Thùy
Xem chi tiết
dang tieu phuong
4 tháng 1 2016 lúc 20:14

nếu 3x + 5y chia hết cho bảy thì x,y thuộc ny

Nguyễn Ngọc Quý
4 tháng 1 2016 lúc 20:17

3x +5y chia hết cho 7 

3x + 5y + 7y chia hết cho 7

3x + 12y chia hết cho 7

3(x + 4y) chia hết cho 7

(3 , 7) = 1

Vậy x + 4y chia hết cho 7