Chứng minh rằng 3 số nguyên tố có tích bằng 646 thì có 1 số bằng tổng của 2 số còn lại
1 . Chứng minh rằng nếu a5 chia hết cho 5 thì a chia hết cho 5 .
2 . Chứng minh rằng nếu tích 5 số bằng 1 thì tổng của chúng không thể bằng 0 .
3 . Chứng minh rằng tồn tại một giá trị n thuộc N* sao cho n2 + n + 1 không phải lá số nguyên tố .
4 Chứng minh rằng nếu n là số nguyên tố lớn hơn 3 thì n2 - 1 chia hết cho 24 .
1.Áp dụng định lý Fermat nhỏ.
1) \(a^5-a=a\left(a^4-1\right)=a\left(a^2-1\right)\left(a^2+1\right)\)
\(=\left(a-1\right)a\left(a+1\right)\left(a^2-4+5\right)\)
\(=\left(a-1\right)a\left(a+1\right)\left(a^2-4\right)+5\left(a-1\right)a\left(a+1\right)\)
\(=\left(a-2\right)\left(a-1\right)a\left(a+1\right)\left(a+2\right)+5\left(a-1\right)a\left(a+1\right)⋮5\)
Vì \(\left(a-2\right)\left(a-1\right)a\left(a+1\right)\left(a+2\right)⋮5\)( tích 5 số nguyên liên tiếp chia hết cho 5)
và \(5\left(a-1\right)a\left(a+1\right)⋮5\)
=> \(a^5-a⋮5\)
Nếu \(a^5⋮5\)=> a chia hết cho 5
Cách 2
\(a^5-a=a\left(a^4-1\right)=a\left(a^2-1\right)\left(a^2+1\right)\)
\(=a\left(a-1\right)\left(a+1\right)\left(a^2+1\right)\)
Do a nguyên nên a có 5 dạng:\(5k;5k+1;5k+2;5k+3;5k+4\)
Nếu \(a=5k\Rightarrow a^5-a=5k\left(a-1\right)\left(a+1\right)\left(a^2+1\right)⋮5\)
Nếu \(a=5k+1\Rightarrow a^5-a=a\cdot5k\left(a+1\right)\left(a^2+1\right)⋮5\)
Nếu \(a=5k+2\Rightarrow a^5-a=a\left(a-1\right)\left(a+1\right)\left(25k^2+20k+5\right)⋮5\)
Nếu \(a=5k+3\Rightarrow a^5-a=a\left(a-1\right)\left(a+1\right)\left(25k^2+30k+10\right)⋮5\)
Nếu \(a=5k+4\Rightarrow a^5-a=a\left(a-1\right)\left(5k+5\right)\left(a^2+1\right)⋮5\)
Vậy \(a^5-a⋮5\)
1/ tìm 10 số tự nhiên liên tiếp chứa nhiều số nguyên tố nhất
2/chứng minh rằng tích của 4 số tự nhiên liên tiếp thì chia hết cho 24
3/ chứng minh rằng tích của 3 số chẵn liên tiếp thì chia hết cho 48
4/ tìm hai số tự nhiên:
a/ có tích bằng 720, ƯCLN bằng 6
b/ có tích bằng 4050, ƯCLN bằng 3
5/số tự nhiên n có 39 ước. chứng minh rằng
a/ n là bình phương của 1 số tự nhiên a
b/ tích các ước của n bằng a39
có ai biết làm mấy bài trên ko toàn là toán nâng cao ko à các bạn ráng giúp mik nha giải chi tiết luôn còn ko có kết quả thôi cũng được
sao mà tham lam thế
Bài 1:Cho n là số nguyên tố và 1 trong 2 số là 8p+1 và 8n-1 là 2 số nguyên tố. Hỏi số còn lại là hợp số hay số nguyên tố?
Bài 2: Hai số\(2^n-1\)và \(2^n+1\)có đồng thời là số nguyên tố không? Vì sao?
Bài 3: Chứng minh rằng nếu P và P+2 là 2 số nguyên tố lớn hơn 3 thì tổng của chúng chia hết cho 12.
Bài 4: Tìm số nguyên tố p, sao cho p+10 và p+14 là số nguyên tố. Chứng minh rằng không còn nữa,
Bài 1:Cho n là số nguyên tố và 1 trong 2 số là 8p+1 và 8n-1 là 2 số nguyên tố. Hỏi số còn lại là hợp số hay số nguyên tố?
Bài 2: Hai số\(2^n-1\)và \(2^n+1\)có đồng thời là số nguyên tố không? Vì sao?
Bài 3: Chứng minh rằng nếu P và P+2 là 2 số nguyên tố lớn hơn 3 thì tổng của chúng chia hết cho 12.
Bài 4: Tìm số nguyên tố p, sao cho p+10 và p+14 là số nguyên tố. Chứng minh rằng không còn nữa,
Bài 1:Cho n là số nguyên tố và 1 trong 2 số là 8p+1 và 8n-1 là 2 số nguyên tố. Hỏi số còn lại là hợp số hay số nguyên tố?
Bài 2: Hai số\(2^n-1\)và \(2^n+1\)có đồng thời là số nguyên tố không? Vì sao?
Bài 3: Chứng minh rằng nếu P và P+2 là 2 số nguyên tố lớn hơn 3 thì tổng của chúng chia hết cho 12.
Bài 4: Tìm số nguyên tố p, sao cho p+10 và p+14 là số nguyên tố. Chứng minh rằng không còn nữa,
bài 1:số 13 là số nguyên tố có tính chất:nếu đổi chỗ hai chữ số của nó thì ta lại được một số nguyên tố,đó là số 31.Trong các số nguyên tố nhỏ hơn 100,những số nào cũng có tính chất như số 13?
bài 2:tổng của hai số nguyên tố có thể bằng 4025 được không ?
bài 3:tìm số tự nhiên x,biết rằng 403 chia cho x thì dư 12,còn 217 chia cho x thì dư 13.
bài 4:người ta đếm trứng trong một rổ.Nếu đếm theo từng chục cũng như đếm theo tá ( 12 quả ) hoặc đếm từng 15 quả một thì lần nào cũng còn lại 1 quả.Tính số trứng trong rổ,biết rằng số chứng chưa đến 100.
Cho 1001 số nguyên dương khác nhau nhỏ hơn 2000 . Chứng minh rằng ta có thể chọn ra 3 số mà 1 số bằng tổng 2 số còn lại
gọi \(a_1,a_2...a_{1001}\) là 1001 số nguyên dương đã cho xếp từ bé đến lớn
nghĩa là \(a_{1001}\) là số nguyên dương lớn nhất.
giả sử không thể chọn ra 3 số mà tổng hai số bất kỳ luôn khác số còn lại
khi đó ta có :
\(a_1,a_2,...a_{1001},a_{1001}-a_1;a_{1001}-a_2;....;a_{1001}-a_{1000}\) là 2001 số nguyên dương phân biệt nhỏ hơn 2000
điều này là vô lý vì chỉ có 2000 số nguyên dương bé hơn 2000
vậy giả sử là sai và ta có điều phải chứng minh
theo mik á
đúng rồi bn ấy lm đúng
chứng minh rằng nếu tích 3 số dương bằng 1 còn tổng số đó lớn hơn tổng các số nghịch đảo của chúng thì trong 3 số đó có một số lớn hơn 1
1. Cho p và 2p + 1 là các số nguyên tố (p>3). Chứng minh rằng 4p + 1 là hợp số.
2. Cho p và 10p + 1 là các số nguyên tố (p>3). Chứng minh rằng 5p + 1 là hợp số.
3. Cho p và 8p2 - 1 là các số nguyên tố (p>3. Chứng minh rằng 8p2 + 1 là hợp số.
4. Ta biết rằng có 25 số nguyên tố nhỏ hơn 100. tổng của 25 số nguyên tố đó là số chẵn hay số lẻ. Vì sao?
5. Tổng của 3 số nguyên tố bằng 1012. Tìm số nguyên tố nhỏ nhất.