giá trị lớn nhất của biểu thức \(A=\frac{40}{x+3\sqrt{x}+6}\)
Cho biểu thức \(A=\left(\frac{2x+\sqrt{x}-1}{1-x}+\frac{2x\sqrt{x}+x-\sqrt{x}}{1+x\sqrt{x}}\right):\frac{2\sqrt{x}-1}{\sqrt{x}-x}\)
a. Rút gọn biểu thức A
b, Tính giá trị x để giá trị của biểu thức A =2/3
c. Biểu thức A có giá trị lớn nhất không ? Vì sao ?
1. \(P=\frac{x\sqrt{x}-3}{x-2\sqrt{x}-3}-\frac{2\left(\sqrt{3}-3\right)}{\sqrt{x}+1}+\frac{\sqrt{3}+3}{3-\sqrt{3}}\)
a) Rút gọn P
b) Tính giá trị nhỏ nhất của P
c) Tính giá trị của P với \(x=14-6\sqrt{5}\)
2. Tìm giá trị nhỏ nhất của biểu thức \(P=x^2-x\sqrt{3}+1\)
3. Tìm số dương x để biểu thức \(Y=\frac{x}{\left(x+2011\right)^2}\)đạt giá trị lớn nhất
4. Cho \(Q=\frac{1}{x-\sqrt{x}+2}\)xác định x để Q đạt giá trị lớn nhất
2. \(P=x^2-x\sqrt{3}+1=\left(x^2-x\sqrt{3}+\frac{3}{4}\right)+\frac{1}{4}=\left(x-\frac{\sqrt{3}}{2}\right)^2+\frac{1}{4}\ge\frac{1}{4}\)
Dấu '=' xảy ra khi \(x=\frac{\sqrt{3}}{2}\)
Vây \(P_{min}=\frac{1}{4}\)khi \(x=\frac{\sqrt{3}}{2}\)
3. \(Y=\frac{x}{\left(x+2011\right)^2}\le\frac{x}{4x.2011}=\frac{1}{8044}\)
Dấu '=' xảy ra khi \(x=2011\)
Vây \(Y_{max}=\frac{1}{8044}\)khi \(x=2011\)
4. \(Q=\frac{1}{x-\sqrt{x}+2}=\frac{1}{\left(x-\sqrt{x}+\frac{1}{4}\right)+\frac{7}{4}}=\frac{1}{\left(\sqrt{x}-\frac{1}{2}\right)^2+\frac{7}{4}}\le\frac{4}{7}\)
Dấu '=' xảy ra khi \(x=\frac{1}{4}\)
Vậy \(Q_{max}=\frac{4}{7}\)khi \(x=\frac{1}{4}\)
Làm như thế nào ra \(\frac{x}{4x.2011}\)vậy bạn?
BĐT \(\left(x+y\right)^2\ge4xy\)nhe bạn
cho 2 biểu thức
A=\(\frac{\sqrt{x}}{\sqrt{x}-1}+\frac{1}{\sqrt{x}+2}-\frac{3\sqrt{x}}{x+\sqrt{x}-2}\)
B=\(\frac{\sqrt{x}+3}{\sqrt{x}+1}\)
a)Rút gọn biểu thức A
b)Tìm giá trị của x để biểu thức S=A.B có giá trị lớn nhất
a)\(ĐKXĐ\Leftrightarrow\begin{cases}\sqrt{x}\ge0\\\sqrt{x}-1\ne0\end{cases}\Leftrightarrow\begin{cases}x\ge0\\x\ne1\end{cases}}\)
\(A=\frac{\sqrt{x}\cdot\left(\sqrt{x}+2\right)+1\cdot\left(\sqrt{x}-1\right)-3\sqrt{x}}{\left(\sqrt{x}-1\right)\cdot\left(\sqrt{x}+2\right)}\)
\(=\frac{x+2\sqrt{x}+\sqrt{x}-1-3\sqrt{x}}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+2\right)}\)
\(=\frac{x-1}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+2\right)}\)
\(=\frac{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+2\right)}\)
\(=\frac{\sqrt{x}+1}{\sqrt{x}+2}\)
b)\(S=A\cdot B\)
\(=\frac{\sqrt{x}+1}{\sqrt{x}+2}\cdot\frac{\sqrt{x}+3}{\sqrt{x}+1}\)
\(=\frac{\sqrt{x}+3}{\sqrt{x}+2}\)
\(=\frac{\sqrt{x}+2+1}{\sqrt{x}+2}\)
\(=1+\frac{1}{\sqrt{x}+2}\)
Để S đạt GTLN thì \(\frac{1}{\sqrt{x}+2}\) đạt GTLN
\(\frac{1}{\sqrt{x}+2}\) đạt GTLN \(\Leftrightarrow\sqrt{x}+2\) đạt GTNN
GTNN \(\sqrt{x}+2\) là 2 \(\Leftrightarrow x=0\)
Vậy GTLN của S là \(\frac{3}{2}\Leftrightarrow x=0\)
ĐKXĐ \(\Leftrightarrow\)\(\sqrt{x}\ge0\) và \(\sqrt{x}-1\ne0\)
\(\Leftrightarrow x\ge0\) và \(x\ne1\)
SAO KHÔNG XEM ĐƯỢC VẬY TOÀN LEFT RIGHT FRAC CÁI GÌ CHẢ HIỂU NỔI
cho 2 biểu thức
A=\(\frac{\sqrt{x}}{\sqrt{x}-1}+\frac{1}{\sqrt{x}+2}-\frac{3\sqrt{x}}{x+\sqrt{x}-2}\)
B=\(\frac{\sqrt{x}+3}{\sqrt{x}+1}\)
a)Rút gọn biểu thức A
b)Tìm giá trị của x để biểu thức S=A.B có giá trị lớn nhất
a/ \(A=\frac{\sqrt{x}}{\sqrt{x}-1}+\frac{1}{\sqrt{x}+2}-\frac{3\sqrt{x}}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+2\right)}\) \(\left(ĐK:x\ge0;x\ne1\right)\)
\(=\frac{\sqrt{x}\left(\sqrt{x}+2\right)+\sqrt{x}-1-3\sqrt{x}}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+2\right)}\)
\(=\frac{x+2\sqrt{x}+\sqrt{x}-1-3\sqrt{x}}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+2\right)}=\frac{x-1}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+2\right)}\)
\(=\frac{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+2\right)}=\frac{\sqrt{x}+1}{\sqrt{x}+2}\)
Cho hai biểu thức \(N=\frac{24}{\sqrt{x}+6}vàM=\frac{\sqrt{x}}{\sqrt{x}+6}+\frac{1}{\sqrt{x}-6}+\frac{17\sqrt{x}+30}{\left(\sqrt{x}+6\right).\left(\sqrt{x}-6\right)}\)
a) rút gọn M
b) Tìm giá trị nguyên x để biểu thức L=N.M có giá trị nguyên lớn nhất
a, \(M=\frac{\sqrt{x}}{\sqrt{x}+6}+\frac{1}{\sqrt{x}-6}+\frac{17\sqrt{x}+30}{\left(\sqrt{x}+6\right)\left(\sqrt{x}-6\right)}\)
\(=\frac{x-6\sqrt{x}+\sqrt{x}+6+17\sqrt{x}+30}{\left(\sqrt{x}-6\right)\left(\sqrt{x}+6\right)}=\frac{12\sqrt{x}+x+36}{\left(\sqrt{x}-6\right)\left(\sqrt{x}+6\right)}=\frac{\sqrt{x}+6}{\sqrt{x}-6}\)
b, Ta có : \(L=N.M\Rightarrow L=\frac{\sqrt{x}+6}{\sqrt{x}-6}.\frac{24}{\sqrt{x}+6}=\frac{24}{\sqrt{x}+6}\)
Vì \(\sqrt{x}+6\ge6\)
\(\Rightarrow\frac{24}{\sqrt{x}+6}\le\frac{24}{6}=4\)
Dấu ''='' xảy ra khi \(\sqrt{x}+6=6\Leftrightarrow x=0\)
Vậy GTLN L là 4 khi x = 0
Cho biểu thức : \(A=\frac{\sqrt{x}}{\sqrt{x}+3}+\frac{2\sqrt{x}}{\sqrt{x}-3}-\frac{3x+9}{x-9}\)với \(x\ge0;x\ne9\). Tìm giá trị lớn nhất của biểu thức A.
Biểu thức A đạt giá trị lớn nhất với A=\(\frac{13}{17-x}\)
Biểu thức B đạt giá trị lớn nhất với B=\(\frac{3}{x-7}\)
Biểu thức C đạt giá trị lớn nhất với C=\(\frac{40-3x}{13-x}\)
Biểu thức D đạt giá trị lớn nhất với D=\(\frac{20-x}{x-12}\)
Cám ơn bạn Phạm Minh Hải giúp tôi giải bài toán này
Cho biểu thức
\(A=\left(\frac{x-3\sqrt{x}}{x-9}\right):\left(\frac{1}{x+\sqrt{x}-6}+\frac{\sqrt{x}-3}{\sqrt{x}-2}-\frac{\sqrt{x}-2}{\sqrt{x}+3}\right)\)
1. Rút gọn biểu thức A
2. Tính giá trị của A tại \(x=\frac{25}{16}\)
3. Với giá trị nào của x thì biểu thức A nhận giá trị âm
4. Tính giá trị của A sau khi \(x=\sqrt{7-2\sqrt{6}}+3\)
ĐK: \(x-9\ne0\Rightarrow x\ne9\)
\(\sqrt{x}\ge0\Rightarrow x\ge0\)
\(x+\sqrt{x}-6\ne0\Rightarrow x+3\sqrt{x}-2\sqrt{x}-6\ne0\Rightarrow\left(\sqrt{x}-2\right)\left(\sqrt{x}+3\right)\ne0\)
\(\Rightarrow\sqrt{x}-2\ne0\Rightarrow\sqrt{x}\ne2\Rightarrow x\ne4\)
ĐKXĐ: \(x\ge0;x\ne4;x\ne9\)
\(A=\left(\frac{x-3\sqrt{x}}{x-9}\right):\left(\frac{1}{x+\sqrt{x}-6}+\frac{\sqrt{x}-3}{\sqrt{x}-2}-\frac{\sqrt{x}-2}{\sqrt{x}+3}\right)\)
\(=\frac{\sqrt{x}\left(\sqrt{x}-3\right)}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}:\left(\frac{1}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+3\right)}+\frac{\sqrt{x}-3}{\sqrt{x}-2}-\frac{\sqrt{x}-2}{\sqrt{x}+3}\right)\)
\(=\frac{\sqrt{x}}{\sqrt{x}+3}:\left(\frac{1+\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)-\left(\sqrt{x}-2\right)\left(\sqrt{x}-2\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+3\right)}\right)\)
\(=\frac{\sqrt{x}}{\sqrt{x}+3}:\frac{1+x-9-x+4\sqrt{x}-4}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+3\right)}\)
\(=\frac{\sqrt{x}}{\sqrt{x}+3}.\frac{\left(\sqrt{x}-2\right)\left(\sqrt{x}+3\right)}{4\sqrt{x}-12}\)
\(=\frac{\sqrt{x}\left(\sqrt{x}-2\right)}{4\left(\sqrt{x}-3\right)}\)
2, Với \(x=\frac{25}{16}\)\(\Rightarrow\sqrt{x}=\sqrt{\frac{25}{16}}=\frac{5}{4}\)
\(A=\frac{\frac{5}{4}\left(\frac{5}{4}-2\right)}{4\left(\frac{5}{4}-3\right)}=\frac{5}{4}.\left(-\frac{3}{4}\right):4\left(-\frac{7}{4}\right)=-\frac{15}{16}:-7=\frac{15}{112}\)
\(\orbr{\begin{cases}\orbr{\begin{cases}\\\end{cases}}\\\end{cases}}\)\(\orbr{\begin{cases}\orbr{\begin{cases}\sqrt{x}-2< 0\\\sqrt{x}-3>0\end{cases}\Rightarrow\orbr{\begin{cases}\sqrt{x}< 2\\\sqrt{x}>3\end{cases}}\Rightarrow\orbr{\begin{cases}x< 4\\x>9\end{cases}}}\\\orbr{\begin{cases}\sqrt{x}-2>0\\\sqrt{x}-3< 0\end{cases}\Rightarrow\orbr{\begin{cases}\sqrt{x}>2\\\sqrt{x}< 3\end{cases}\Rightarrow\orbr{\begin{cases}x>4\\x< 9\end{cases}}}}\end{cases}}\)
A=\(\frac{15\sqrt{x}-11}{x+2\sqrt{x}-3}+\frac{3\sqrt{x}-2}{1-\sqrt{x}}-\frac{2\sqrt{x}+3}{\sqrt{x}+3}\)
Rút gọn biểu thức ATìm giá trị của x khi A=\(\frac{1}{2}\)Tìm giá trị lớn nhất của A