tìm các số tự nhiên x,y thỏa mãn: \(2^x+2016=2017^y\)
Tìm các số tự nhiên x , y , z thỏa mãn phương trình : 2016^x+2017^y=2018^z
LƯU Ý
Các bạn học sinh ĐƯỢC đăng các câu hỏi không liên quan đến Toán, hoặc các bài toán linh tinh gây nhiễu diễn đàn. Online Math không thể áp dụng các biện pháp như trừ điểm, thậm chí mở vĩnh viễn tài khoản của bạn nếu vi phạm nội quy nhiều lần
\(x,y,z\ne0\)vế trái luôn lẻ VP luon chan=>\(x,y,z\)phai co so =0
y,z=0 vo nghiem
x=0=> 1+2017^y=2018^z
co nghiem (x,y,z)=(0,1,1)
Tìm các số tự nhiên x,y,z thỏa mãn : 2018x = 2017y + 2016z
\(2016^z+2017^y=2018^x\)
\(\text{TH1 : z = 0}\)
\(\Leftrightarrow2016^0+2017^y=2018^x\)
\(\Leftrightarrow1+2017^y=2018^x\)
\(\Leftrightarrow y=1;x=1\)
\(\text{TH2 : y = 0}\)
\(\Leftrightarrow2016^z+2017^0=2018^x\)
\(\Leftrightarrow2016^z+1=2018^x\)
\(\text{Vế trái là số lẻ }\Leftrightarrow x\ge1\)
\(\text{Vế phải là số chẵn }\Leftrightarrow x\ge1\)
\(\Rightarrow\text{TH2 bị loại}\)
\(\text{TH3 : }x,y,z\ne0\)
\(\Leftrightarrow2016^z+2017^y\text{ là số lẻ}\)
\(\Leftrightarrow2018^x\text{ là số chẵn}\)
\(\Rightarrow\text{TH3 bị loại}\)
\(\text{Vậy x = 0 ; y = 1 ; z = 1}\)
Gợi ý: 2017y là số lẻ
2016z và 2018x là số chẵn trừ khi x=0 ; z=0
Mà 2018x= 2017y + 2016z
=> y=0
=> 2018x=2016z+1
Mặt khác 2018x >= 2016z
Dấu bằng xảy ra <=> x=0;z=0
Thử lại: 1 = 2 vô lí
Vậy không có x;y;z; là số tự nhiên thỏa mãn
mik vt lộn dòng cuối nha x=1 ; y=1;z=0
Tìm các số tự nhiên x,y,z thỏa mãn phương trình: 2016x+2017y=2018z
Xét x = 0
Ta có 1 + 2017y = 2018z
mà 1+2017 = 2018
Nên x = 0; y = z = 1
Xét x > 0
2016 tận cùng 6 nên 2016x luôn tận cùng 6
2017y có tận cùng là 7y và là 1, 7, 9, 3
2018z có tận cùng là 2, 4, 6, 8
Có 6 + 1= 7
6 + 3 = 9
6 + 7 = 13
6 + 9 = 15
Vế trái không có tận cùng bằng VP nên không thỏa mãn
Vậy pt có nghiệm duy nhất là (x; y; z) = (0; 1; 1)
Mấy bn giải giúp mh Thanks nhiều!
Tìm các số nguyên x và y thỏa mãn: x^2015+x^2016+2015^2016=y^2016+y^2017+2016^2017
cho x, y là các số tự nhiên lớn hơn 1 thỏa mãn x^2017=y^2018. Hãy tìm số tự nhiên x, biết y là số tự nhiên nhỏ nhất.
Ai đúng, tick luôn
do y la so tu nhien nho nhat nen y=0
=>y^2018=0
=>x^2017=0
=>x=0
tìm số tự nhiên x,y thỏa mãn:1+x^2+x^3+x^4=2016^y
Tìm các số hữu tỉ x,y thỏa mãn: 2x + 2016 = 2017y
Vì \(2^x+2016\) luôn chẵn với mọi \(x\in Z\)
\(2017^y\)chỉ có thể có các chữ số tận cùng là 1;3;7;9 => \(2017^y\) là số lẻ
\(\Rightarrow2^x+2016\ne2017^y\forall x;y\in Z\)
Vậy không có số hữu tỉ nào thỏa mãn đẳng thức trên
1.cho x thuộc Z, chứng minh rằng x^200+x^100+1 chia het cho x^4+x^2+1
2.tìm các số tự nhiênx,y,z thỏa mãn phương trình:2016^x+2017^y=2018^z
tìm tất cả các số nguyên x,y thỏa mãn 2017^x-2016^y+1/2015