B=3/2.7+3/7.12+3/12.17+....+3/87.92
\(\frac{3}{2.7}+\frac{3}{7.12}+\frac{3}{12.17}+...+\frac{3}{2012.2017}\)
Đặt A=đã cho
=>\(\frac{5}{3}A=\frac{5}{2\cdot7}+\frac{5}{7\cdot12}+...+\frac{5}{2012\cdot2017}\)
=>\(\frac{5}{3}A=\frac{1}{2}-\frac{1}{2017}\)
Đến đây dễ rồi tự lm tiếp nhé
\(=\frac{3}{5}.\left(\frac{5}{2.7}+\frac{5}{7.12}+\frac{5}{12.17}+...+\frac{5}{2012.2017}\right)\)
\(=\frac{3}{5}.\left(\frac{1}{2}-\frac{1}{7}+\frac{1}{7}-\frac{1}{12}+\frac{1}{12}-\frac{1}{17}+...+\frac{1}{2012}-\frac{1}{2017}\right)\)
\(=\frac{3}{5}.\left(\frac{1}{2}-\frac{1}{2017}\right)\)
\(=\frac{3}{5}.\left(\frac{2015}{4034}\right)\)
\(=\frac{1209}{4034}\)
Bài này bạn phải học lý thuyết mới làm được nhé!! Chúc bạn zui~^^
\(\frac{3}{2.7}\frac{3}{7.12}\frac{3}{12.17}+....+\frac{3}{2012.2017}\)
Ta có : 51 + 52 +...+ 52016
= (5+52+53)+(54+55+56)+...+(52014+52015+52016)
= 5(1+5+52)+53(1+5+52)+...+52013(1+5+52)
= 5. 31 + 53.31 +...+52013.31
= 31(5+52+...+52013) chia hết cho 31
Vây 51 + 52 + ...+ 52016 chia hết cho 31
Tính tổng:
C=\(\frac{3}{1.5}+\frac{3}{5.9}+\frac{3}{9.13}+...+\frac{3}{101.105}\)
D=\(\frac{4}{2.7}+\frac{4}{7.12}+\frac{4}{12.17}+...+\frac{4}{102.107}\)
E=\(\frac{5}{3.7}+\frac{5}{7.11}+\frac{5}{11.15}+...+\frac{5}{103.107}\)
F=\(\frac{6}{2.7}+\frac{6}{7.12}+\frac{6}{12.17}+...+\frac{6}{102.107}\)
Chỉ cần để các thừa số ra ngoài rồi nhân các số mà bằng khoảng cách của mẫu lên tử là giải được
LÀM TẮT NHÉ :
\(C=\frac{3}{4}\left(\frac{1}{1}-\frac{1}{5}+\frac{1}{5}-\frac{1}{9}+...+\frac{1}{101}-\frac{1}{105}\right)\))
\(D=\frac{4}{5}\left(\frac{1}{2}-\frac{1}{7}+...+\frac{1}{102}-\frac{1}{107}\right)\)
tương tự với các phần còn lại
55/2.7+55/7.12+55/12.17+55/12.17+55/17.22=?[dấu chấm là nhân]
B=5/2.7+5/7.12+5/12.17+5/17.22+5/22.29
Sửa:
\(B=\frac{5}{2.7}+\frac{5}{7.12}+\frac{5}{12.17}+\frac{5}{17.22}+\frac{5}{22.27}\)
Trả lời
\(B=\frac{5}{2.7}+\frac{5}{7.12}+\frac{5}{12\cdot17}+\frac{5}{17\cdot22}+\frac{5}{22\cdot27}\)
\(\Rightarrow B=\frac{1}{2}-\frac{1}{7}+\frac{1}{7}-\frac{1}{12}+\frac{1}{12}-\frac{1}{17}+\frac{1}{17}-\frac{1}{22}+\frac{1}{22}-\frac{1}{27}\)
\(\Rightarrow B=\frac{1}{2}-\frac{1}{27}\)
\(\Rightarrow B=\frac{25}{54}\)
Vậy B=\(\frac{25}{54}\)
5/2.7 + 5/7.12 + 5/12.17 + 5/17.22 + 5/22.27
/ là phâ`n
\(\frac{5}{2\cdot7}+\frac{5}{7\cdot12}+\frac{5}{12\cdot17}+\frac{5}{17\cdot22}+\frac{5}{22\cdot27}\)
\(=\frac{1}{2}-\frac{1}{7}+\frac{1}{7}-\frac{1}{12}+\frac{1}{12}-\frac{1}{17}+\frac{1}{17}-\frac{1}{22}+\frac{1}{22}-\frac{1}{27}\)
\(=\frac{1}{2}-\frac{1}{27}\)
\(=\frac{25}{54}\)
\(\frac{5}{2.7}+\frac{5}{7.12}+\frac{5}{12.17}+\frac{5}{17.22}+\frac{5}{22.29}=?\)
Cho S=\(\frac{5}{2.7}+\frac{5}{7.12}+...+\frac{5}{22.27}\)
\(=\frac{1}{2}-\frac{1}{7}+\frac{1}{7}-\frac{1}{12}+...+\frac{1}{22}-\frac{1}{27}\)
\(=\frac{1}{2}-\frac{1}{27}=\frac{25}{54}\)
kb nha mn!
\(\frac{5}{2}-\frac{5}{7}+\frac{5}{7}-\frac{5}{12}+\frac{5}{12}-\frac{5}{17}+\frac{5}{17}-\frac{5}{22}+\frac{5}{22}-\frac{5}{29}=\frac{5}{2}-0-0-0-0-\frac{5}{29}=\frac{5}{2}-\frac{5}{29}=\frac{145}{58}-\frac{10}{58}=\frac{135}{58}\)
tính tổng:
5/2.7 + 5/7.12 + 5/12.17 + 5/22.27
nhanh tay nha mình tick
\(\frac{5}{2.7}+\frac{5}{7.12}+\frac{5}{12.17}+\frac{5}{22.27}\)
\(=\frac{1}{2}-\frac{1}{7}+\frac{1}{7}-\frac{1}{12}+\frac{1}{12}-\frac{1}{17}+\frac{5}{22.27}\)
\(=\frac{1}{2}-\frac{1}{17}+\frac{5}{22.27}\)
\(=\frac{2270}{5049}\)
\(\frac{5}{2.7}.\frac{5}{7.12}.\frac{5}{12.17}...\frac{2}{907.1002}\)
TA CÓ: \(\frac{1}{n}-\frac{1}{n+5}=\frac{n+5-n}{n\left(n+5\right)}=\frac{5}{n\left(n+5\right)}\)
Thay vào biểu thức trên , ta được:
\(\frac{5}{2.7}+\frac{5}{7.12}+\frac{5}{12.17}+...+\frac{5}{907.1002}=\frac{1}{2}-\frac{1}{7}+\frac{1}{7}-\frac{1}{12}+\frac{1}{12}-\frac{1}{17}+...+\frac{1}{907}-\frac{1}{1002}\)
\(=\frac{1}{2}-\frac{1}{1002}=\frac{250}{501}\)