Giải các phương trình sau
a)\(\frac{2x}{x-1}\)+\(\frac{4}{x^2+2x-3}\)= \(\frac{2x-5}{x+3}\)
b)\(\frac{1}{x^2+2x+3}\)+ 4 =\(\frac{1}{x^2+1}\)
c)\(\frac{1}{x-3}\)+ 2 = x +\(\frac{5}{x-1}\)
Mong giải nhanh hộ
Trân trọng cảm ơn
Giải các phương trình sau :
\(a,\frac{2}{2x+1}-\frac{3}{2x-1}=\frac{4}{4x^2-1}\)
\(b,\frac{2x}{x+1}+\frac{18}{x^2+2x-3}=\frac{2x-5}{x+3}\)
\(c,\frac{1}{x-1}+\frac{2x^2-5}{x^3-1}=\frac{4}{x^2+x+1}\)
\(a,ĐKXĐ:x\ne\pm\frac{1}{2}\)
Ta có: \(\frac{2}{2x+1}-\frac{3}{2x-1}=\frac{4}{4x^2-1}\)
\(\Leftrightarrow2\left(2x-1\right)-3\left(2x+1\right)=4\)
\(\Leftrightarrow4x-2-6x-3=4\)
\(\Leftrightarrow-2x=9\)
\(\Leftrightarrow x=-\frac{9}{2}\)(Tm ĐKXĐ)
Vậy pt có nghiệm duy nhất \(x=-\frac{9}{2}\)
\(b,ĐKXĐ:x\ne\pm1;-3\)
Ta có: \(\frac{2x}{x+1}+\frac{18}{x^2+2x-3}=\frac{2x-5}{x+3}\)
\(\Leftrightarrow\frac{2x}{x+1}+\frac{18}{\left(x-1\right)\left(x+3\right)}=\frac{2x-5}{x+3}\)
\(\Leftrightarrow2x\left(x-1\right)\left(x+3\right)+18\left(x+1\right)=\left(2x-5\right)\left(x-1\right)\left(x+1\right)\)
\(\Leftrightarrow2x\left(x^2+2x-3\right)+18x+18=\left(2x-5\right)\left(x^2-1\right)\)
\(\Leftrightarrow2x^3+4x^2-6x+18x+18=2x^3-2x-5x^2+5\)
\(\Leftrightarrow9x^2+14x+13=0\)
\(\Leftrightarrow\left(9x^2+14x+\frac{49}{9}\right)+\frac{68}{9}=0\)
\(\Leftrightarrow\left(3x+\frac{7}{3}\right)^2+\frac{68}{9}=0\)
Pt vô nghiệm
\(c,ĐKXĐ:x\ne1\)
Ta có: \(\frac{1}{x-1}+\frac{2x^2-5}{x^3-1}=\frac{4}{x^2+x+1}\)
\(\Leftrightarrow x^2+x+1+2x^2-5=x-1\)
\(\Leftrightarrow3x^2=3\)
\(\Leftrightarrow x^2=1\)
\(\Leftrightarrow x=\pm1\)
Kết hợp vs ĐKXĐ được x = -1
Vậy pt có nghiệm duy nhất x = -1
làm lần lượt nha(bài nào k bt bỏ qua)
\(a,\frac{2}{2x+1}-\frac{3}{2x-1}=\frac{4}{4x^2-1}\)
\(\Rightarrow\frac{2\left(2x-1\right)-3\left(2x+1\right)}{4x^2-1}=\frac{4}{4x^2-1}\)
\(\Rightarrow-2x-5=4\)
\(\Rightarrow-2x=9\)
\(\Rightarrow x=\frac{9}{-2}\)
Giải Phương trình
a, \(\frac{x+4}{2x^2-5x+2}+\frac{x+1}{2x^2-7x+3}=\frac{2x+5}{2x^2-7x+3}\)
b, \(\frac{x^2}{x^2+2x+2}+\frac{x^2}{x^2-2x+2}-\frac{4.\left(x^2-5\right)}{x^4+4}=\frac{322}{65}\)
c, \(\frac{1}{x-1}+\frac{2x^2-5}{x^3-1}=\frac{4}{x^2+x+1}\)
Trình bày cách làm nữa nha
Giải các phương trình sau
a, \(\frac{x+5}{3}-\frac{x-3}{5}=\frac{5}{x-3}-\frac{3}{x+5}\)
b,\(\frac{3x-1}{x-1}-\frac{2x+5}{x+3}+\frac{4}{x^2+2x+3}\)
c,\(\frac{2x}{3x^2-x+2}-\frac{7x}{3x^2+5x+2}=1\)
Các bạn giúp mk nha
\(\Leftrightarrow\frac{5\left(x+5\right)-3\left(x-3\right)}{15}=\frac{5\left(x+5\right)-3\left(x-3\right)}{\left(x-3\right)\left(x+5\right)}\)
\(\Leftrightarrow\frac{2x+34}{15}=\frac{2x+34}{x^2+2x-15}\Leftrightarrow\orbr{\begin{cases}2x+34=0\\x^2+2x-15=15\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=-17\\x^2+2x-30=0\end{cases}}\)
Từ đó tìm được \(S=\left\{-17;\sqrt{31}-1;-\sqrt{31}-1\right\}\)
1) Giải các phương trình:
a) \(\frac{x-3}{5}-\frac{2x-1}{10}=\frac{x+1}{2}+\frac{1}{4}\)
b)\(\frac{x+3}{2}-\frac{2-1}{3}-1=\frac{x+5}{6}\)
c)\(\frac{x-1}{4}-\frac{5-2x}{9}=3x-\frac{2}{3}\)
d)\(\frac{2x-1}{4}+\frac{x-3}{3}=\frac{4x-2}{3}-\frac{6x+7}{12}\)
e)\(\frac{3x-2}{5}+\frac{x-1}{9}=\frac{14x-3}{15}-\frac{2x+1}{9}\)
\(\frac{x-3}{5}-\frac{2x-1}{10}=\frac{x+1}{2}+\frac{1}{4}\)
\(< =>\frac{\left(x-3\right).4}{20}-\frac{\left(2x-1\right).2}{20}=\frac{\left(x+1\right).10}{20}+\frac{5}{20}\)
\(< =>4x-12-4x+2=10x+10+5\)
\(< =>10x=-10-10-5=-25\)
\(< =>x=-\frac{25}{10}=-\frac{5}{2}\)
\(\frac{x+3}{2}-\frac{2x-1}{3}-1=\frac{x+5}{5}\)
\(< =>\frac{\left(x+3\right).15}{30}-\frac{\left(2x-1\right).10}{30}-\frac{30}{30}=\frac{\left(x+5\right).5}{30}\)\(< =>15x+45-20x+10-30=5x+25\)
\(< =>-5x+25=5x+25< =>10x=0< =>x=0\)
\(\frac{x-1}{4}-\frac{5-2x}{9}=3x-\frac{2}{3}\)
\(< =>\frac{\left(x-1\right).9}{36}-\frac{\left(5-2x\right).4}{36}=\frac{3x.36}{36}-\frac{2.12}{36}\)
\(< =>\left(x-1\right).9-\left(5-2x\right).4=108x-24\)
\(< =>9x-9-20+8x=108x-24\)
\(< =>108x-17x=-29+24\)
\(< =>91x=-5< =>x=-\frac{5}{91}\)
1, giải các phương trình sau
a, \(\frac{13}{2x^2+x-21}+\frac{1}{2x+7}=\frac{6}{x^2-9}\)
b, \(\frac{x-3}{x-5}+\frac{1}{x}=\frac{x+5}{x\left(x-5\right)}\)
c, \(\frac{1}{x+2}+\frac{1}{x^2-2x}=\frac{8}{x^3-4x}\)
d, \(\frac{2}{x^2-4}-\frac{1}{x^2-2x}=\frac{4+x}{x\left(x+2\right)}\)
a,\(\frac{13}{\left(x-3\right)\left(2x+7\right)}+\frac{1}{2x+7}=\frac{6}{x^2-9}\)\(\Leftrightarrow\frac{13\left(x+3\right)}{\left(x^2-9\right)\left(2x+7\right)}+\frac{x^2-9}{\left(x^2-9\right)\left(2x+7\right)}-\frac{6\left(2x+7\right)}{\left(x^2-9\right)\left(2x+7\right)}=0\)
\(\Leftrightarrow x+x^2-12=0\Leftrightarrow\orbr{\begin{cases}x=-4\\x=3\end{cases}}\)
b,\(\frac{x-3}{x-5}+\frac{1}{x}=\frac{x+5}{x\left(x-5\right)}\Leftrightarrow\frac{x\left(x-3\right)}{x\left(x-5\right)}+\frac{x-5}{x\left(x-5\right)}-\frac{x+5}{x\left(x-5\right)}=0\)
\(\Leftrightarrow x^2-3x-10=0\Rightarrow\orbr{\begin{cases}x=5\left(L\right)\\x=-2\end{cases}}\)
c,\(\frac{1}{x+2}+\frac{1}{x\left(x-2\right)}-\frac{8}{x\left(x^2-4\right)}=0\)\(\Leftrightarrow\frac{x\left(x-2\right)}{x\left(x^2-4\right)}+\frac{x+2}{x\left(x^2-4\right)}-\frac{8}{x\left(x^2-4\right)}=0\)
\(\Leftrightarrow x^2-x-6=0\Rightarrow\orbr{\begin{cases}x=3\\x=-2\left(L\right)\end{cases}}\)
d,\(\frac{2}{\left(x^2-4\right)}-\frac{1}{x\left(x-2\right)}-\frac{x+4}{x\left(x+2\right)}=0\)\(\Leftrightarrow\frac{2x}{x\left(x^2-4\right)}-\frac{x+2}{x\left(x^2-4\right)}-\frac{\left(x+4\right)\left(x-2\right)}{x\left(x^2-4\right)}=0\)
\(\Leftrightarrow-x^2-5x-10=0\)(vô nghiệm)
\(\)
giải phương trình hộ minh nha mấy bạn <3
a) \(\frac{3x-1}{x-1}-\frac{2x+5}{3}+\frac{4}{x^2-2x-3}=1\)
b) \(\frac{5}{x^2+x-6}+\frac{2}{x^2+4x+3}=\frac{-3}{2x-1}\)
c) \(\frac{4x^2+16}{x^2+16}=\frac{3}{x^2+1}+\frac{5}{x^2+3}+\frac{7}{x^2+5}\)
Làm đc 2 bài đầu chưa, t làm câu cuối cho, hai câu đầu dễ í mà
1) Giải các phương trình:
a) \(\frac{x+4}{4}-\frac{x-3}{6}=\frac{x}{3}\)
b) \(x-\frac{x+1}{3}=\frac{2x+1}{5}\)
c)\(\frac{2x-7}{5}+\frac{x+11}{2}=-4\)
d)\(\frac{4x+1}{3}-\frac{2}{3}-\frac{x-3}{6}=x\)
e)\(\frac{5x-2}{4}-\frac{x-8}{3}=\frac{x-1}{2}+5\)
Giải bất phương trình
a, \(5+\frac{x+4}{5}< x=\frac{x-2}{2}+\frac{x+3}{3}\)
b, \(x+1-\frac{x-1}{3}< \frac{2x+3}{3}\frac{x}{3}+5\)
c, \(\frac{\left(x-3\right)^2}{3}-\frac{\left(2x-1\right)^2}{12}\le x\left(x+1\right)\)
d, \(\frac{2x-3}{4}-\frac{x+1}{3}\ge\frac{1}{2}-\frac{3-x}{5}\)
Bài1: giải các phương trình sau: 1)\(\frac{2x-5}{x+5}=3\) 2)\(\frac{4}{x+1}=\frac{3}{x-2}\) 3) \(\frac{5}{2x-3}=\frac{1}{x-4}\) Bài2: giải các phương trình sau: 1)\(\frac{1}{x-1}+\frac{2}{x+1}=\frac{5x-3}{xmũ2-1}\) 2) \(\frac{x+2}{x-2}-\frac{1}{X}=\frac{2}{xmũ2-2x}\) 3) \(\frac{5}{x-3}-\frac{3}{x+3}=\frac{3x}{xmũ2-9}\)
Bài 1:
1, \(\frac{2x-5}{x+5}=3\) (ĐKXĐ: x \(\ne\) -5)
\(\Leftrightarrow\) \(\frac{2x-5}{x+5}=\frac{3\left(x+5\right)}{x+5}\)
\(\Rightarrow\) 2x - 5 = 3(x + 5)
\(\Leftrightarrow\) 2x - 5 = 3x + 15
\(\Leftrightarrow\) 2x - 3x = 15 + 5
\(\Leftrightarrow\) -x = 20
\(\Leftrightarrow\) x = -20 (TMĐKXĐ)
Vậy S = {-20}
2, \(\frac{4}{x+1}=\frac{3}{x-2}\) (ĐKXĐ: x \(\ne\) -1; x \(\ne\) 2)
\(\Leftrightarrow\) \(\frac{4\left(x-2\right)}{\left(x+1\right)\left(x-2\right)}=\frac{3\left(x+1\right)}{\left(x+1\right)\left(x-2\right)}\)
\(\Rightarrow\) 4(x - 2) = 3(x + 1)
\(\Leftrightarrow\) 4x - 8 = 3x + 3
\(\Leftrightarrow\) 4x - 3x = 3 + 8
\(\Leftrightarrow\) x = 11 (TMĐKXĐ)
Vậy S = {11}
3, \(\frac{5}{2x-3}=\frac{1}{x-4}\) (ĐKXĐ: x \(\ne\) \(\frac{3}{2}\); x \(\ne\) 4)
\(\Leftrightarrow\) \(\frac{5\left(x-4\right)}{\left(2x-3\right)\left(x-4\right)}=\frac{2x-3}{\left(2x-3\right)\left(x-4\right)}\)
\(\Rightarrow\) 5(x - 4) = 2x - 3
\(\Leftrightarrow\) 5x - 20 = 2x - 3
\(\Leftrightarrow\) 5x - 2x = -3 + 20
\(\Leftrightarrow\) 3x = 17
\(\Leftrightarrow\) x = \(\frac{17}{3}\) (TMĐKXĐ)
Vậy S = {\(\frac{17}{3}\)}
Bài 2:
1, \(\frac{1}{x-1}+\frac{2}{x+1}=\frac{5x-3}{x^2-1}\) (ĐKXĐ: x \(\ne\) \(\pm\) 1)
\(\Leftrightarrow\) \(\frac{x+1}{\left(x-1\right)\left(x+1\right)}+\frac{2\left(x-1\right)}{\left(x-1\right)\left(x+1\right)}=\frac{5x-3}{\left(x-1\right)\left(x+1\right)}\)
\(\Rightarrow\) x + 1 + 2(x - 1) = 5x - 3
\(\Leftrightarrow\) x + 1 + 2x - 2 = 5x - 3
\(\Leftrightarrow\) 3x - 1 = 5x - 3
\(\Leftrightarrow\) 3x - 5x = -3 + 1
\(\Leftrightarrow\) -2x = -2
\(\Leftrightarrow\) x = 1 (KTM)
\(\Rightarrow\) Pt vô nghiệm
Vậy S = \(\varnothing\)
2, \(\frac{x+2}{x-2}-\frac{1}{x}=\frac{2}{x^2-2x}\) (ĐKXĐ: x \(\ne\) 2; x \(\ne\) 0)
\(\Leftrightarrow\) \(\frac{x\left(x+2\right)}{x\left(x-2\right)}-\frac{x-2}{x\left(x-2\right)}=\frac{2}{x\left(x-2\right)}\)
\(\Rightarrow\) x(x + 2) - x + 2 = 2
\(\Leftrightarrow\) x2 + 2x - x + 2 = 2
\(\Leftrightarrow\) x2 + x = 2 - 2
\(\Leftrightarrow\) x2 + x = 0
\(\Leftrightarrow\) x(x + 1) = 0
\(\Leftrightarrow\) x = 0 hoặc x + 1 = 0
\(\Leftrightarrow\) x = 0 và x = -1
Ta có: x = 0 KTM đkxđ
\(\Rightarrow\) x = -1
Vậy S = {-1}
3, \(\frac{5}{x-3}-\frac{3}{x+3}=\frac{3x}{x^2-9}\) (ĐKXĐ: x \(\ne\) \(\pm\) 3)
\(\Leftrightarrow\) \(\frac{5\left(x+3\right)}{\left(x-3\right)\left(x+3\right)}-\frac{3\left(x-3\right)}{\left(x-3\right)\left(x+3\right)}=\frac{3x}{\left(x-3\right)\left(x+3\right)}\)
\(\Rightarrow\) 5(x + 3) - 3(x - 3) = 3x
\(\Leftrightarrow\) 5x + 15 - 3x + 9 = 3x
\(\Leftrightarrow\) 2x + 24 = 3x
\(\Leftrightarrow\) 2x - 3x = 24
\(\Leftrightarrow\) -x = 24
\(\Leftrightarrow\) x = -24 (TMĐKXĐ)
Vậy S = {-24}
Chúc bn học tốt!!
Mình tính mãi vẫn có chỗ sai, mong bạn thông cảm!!