Cho A= 8n + 11...1 ( có n chữ số 1)
CMR: A luôn chia hết cho 9 với mọi n thuộc N*
Chứng minh rằng :
a)với mọi n thuộc N thì A=8*n+11..11 chia hết cho 9 (11...111 có n chữ số 1 )
b)Với mọi a,b,n thuộc N thì B=(10n-1)*a+(11..111-n)*b chia hết cho 9 (111..111 có n chữ số 1)
c)888...88-9=n chia hết cho 9 (888..888 có n chữ số 8)
Chứng minh rằng với mọi số tự nhiên n ta luôn có:
a) 10n + 8 chia hết cho 9
b) 9n + 1 chia hết cho 2
c) 8n + 11.......1 chia hết cho 9 (Có n chữ số 1)
d) 6n - 1 chia hết cho 5
e) 10n + 18n - 1 chia hết cho 27
Cmr a, với mọi a,b thuộc N thì A= 2n +11...1:39n chữ số 1
b, với mọi a,b,n thuộc N thì B= (10^n -1)*a+(111...1-n)*b chia hết cho 9(n chữ số 1)
a) CMR: ( n^2+n-1)^2 chia hết cho 24 với mọi số nguyên n
b) CMR: n^3+6n^2 +8n chia hết cho 48 với mọi số n chẵn
c) CMR : n^4 -10n^2 +9 chia hết cho 384 với mọi số n lẻ
1/Chứng minh rằng với e thuộc N , thì các số sau chia hết cho 9 :
a/10n-1
b/10n+8
2/Tìm điều kiện của n thuộc N để số 10n-1 chia hết cho 9 và 11
3/Cho A = 8n + 1111...111 (n thuộc N*)
1111.....111 có n chữ số 1
Chứng minh rằng A chia hết cho 9
\(1.a,10^n-1=100..0-1\)(n chữ số 0)=999..99(n chữ số 9)chia hết cho (vì có tổng bằng 9+9+..+9 chia hết cho 9)
\(b,10^n+8=100..0+8\)(n chữ số 0) = 1000...08.
Tổng các chữ số là: 1+0+0+...+8=9 chia hết cho 9.
2.
Tạm thời mik chỉ bik lm bài 1 nên pn thông cảm nhé
1 a) pn thao khảo tại nhé do ở đây có bài giống nên mik gửi link luôn nhé! http://olm.vn/hoi-dap/question/651590.html
b) Ta có: 10n+8= 1000000000000.......000+8
n chữ số 0
=> 10n+8= 10000000000........008
n chữ số 8
Ta có tổng các chữ số của 10n+8 bằng: 1+00000000.....000 ( Với n chữ số 0)+8= 1+0+8=9
Vì 9 chia hết cho 9 => 10n+8 chia hết cho 9
ta có : \(^{10^n}\) = 999...9 ( có n số 9 ) vì 9999...9 chia hết cho 9
suy ra 10^n - 1 chia hết cho 9
1. CMR
a, 1+11+11^2+.....+11^9 chia hết cho 10
b, Số gồm 27 chữ số 1 chia het cho 27
2.CMR
a, 5^n-1 chia hết cho 4(n thuộc N)
b, n^2+n+1 ko chia hết cho 5(n thuộc N)
CMR
a) (5n + 7) x (4n + 6) chia hết cho 2 với mọi n thuộc N
b) (8n + 1) x (6n + 5) chia hết cho 2 với mọi n thuộc N
a, Cho n thuộc N CMR n^2 chia hết cho 3 hoặc n^3 chia 3 dư 1
b, CMR với mọi n,m thuộc N ta luôn có m.n(m^2-n^2) chia hết cho 3
Các cụ cho con bỏ câu này
đề sai bn nhé
Phải là Cho n thuộc N CMR n^2 chia hết cho 3 hoặc n^2 chia 3 dư 1
Đơn giản thôi:
Xét n=3k=> n^2=9k^2 chia hết cho 3
Xét n=3q+1=> n^2=9q^2+6q+1 chia 3 dư 1 do 9q^2 và 6q chia hết cho 3 và 1 chia 3 dư 1
Xét n=3p+2 => n^2=9p^2+6p+4 chia 3 dư 1 do 9p^2 và 6p chia hết cho 3 và 4 chia 3 dư 1
Vậy với mọi n thuộc N thì n^2 chia 3 dư 0 hoặc 1.
b) Có mn(m^2-n^2)
=mn(m-n)(m+n)
Nếu m hoặc n chia hết cho 3 thì xong luôn
Nếu m và n cùng dư khi chia cho 3 thì m-n chia hết cho 3
Nếu m và n khác dư khi chia cho 3 (lúc đó m,n ko chia hết cho 3) thì m+n chia hết cho 3
Vậy với mọi m,n thuộc N thì mn(m^2-n^2) chia hết cho 3
khó.......................................qáu
Chứng tỏ rằng
a) 2n + 11....1 chia hết cho 3 ( có n chữ số 1)
b) 8n + 11....1 chia hết cho 9 ( có n chữ số 1 )
a) Ta co:
2n + 111....1 ( n CS 1 )
= ( 3n - n ) + 111....1 ( n CS 1 )
= 3n + ( 111....1 - n ) ( n CS 1 )
Tổng các chữ so cua so 111... 1 ( n CS 1 ) la :
1 + 1 + 1 + .........+ 1 = n ( n so 1 )
suy ra, Số 111...1 và n có cùng số dư khi chia cho 3 ( n CS 1 )
suy ra : ( 111...1 - n ) ⋮3 ( n CS 1 )
Ma (3n) ⋮ 3 với mọi n ∈N
suy ra: [ 3n + ( 111...1 - n ) ] ⋮ 3 ( n CS 1 )
Vay voi moi số tự nhiên n # 0 thì ta co:
2n + 111...1 chia hết cho 3 ( n CS 1 )