Câu 1:viết dưới dạng các tích tổng sau
1,ab+ac 2,ab-ac+ad 3,ax-bx-cx+dx 4,a(b+c)-d(b+c) 5,ac-ad+bc-bd 6,ax+by+bx+ay Bài2: chứng tỏ
1,(a-b+c)-(a+c)=-b
2,(a+b)-(b-a)+c=2a+c
3,-(a+b-c)+(a-b-c)=-2b
4,a(b+c)-a(b+d)=a(c-d)
5,a(b-c)+a(d+c)=a(b+d)
Viết dưới dạng tích các tổng sau
1, ab+ac
2, ab-ac+ad
3, ax-bx-cx+dx
1, ab+ac= a(b+c)
2, ab-ac+ad = a(b-c+d)
3, ax-bx-cx+dx = x(a-b-c+d)
Viết dưới dạng tích các tổng sau
1) ab + ac
2) ab-ac+ad
3) ax-bx-cx+dx
4) a(b+c)-d(b+c)
5) ac-ad+bc-bd
6) ax+by+bx+ay
1) ab + ac = a(b + c)
2) ab - ac + ad = a(b - c + d)
3) ax - bx - cx + dx = x(a - b - c + d)
4) a(b + c) - d(b + c) = (b + c)(a - d)
5) ac - ad + bc - bd = a(c - d) + b(c - d) = (c - d)(a + b)
6) ax + by + bx + ay = (ax + ay) + (bx + by) = a(x + y) + b(x + y) = (x + y)(a + b)
ab + ac = a ( b + c )
ab - ac + ad = a ( b - c + d )
ax - bx - cx + dx = x ( a - b - c + d )
Viết dưới dạng tích các tổng sau:
1/ ab + ac
2/ ab - ac +ad
3/ ax - bx - cx +dx
4/ a(b+c) - d(b+c)
5/ ac - ad + bc- bd
6/ ax + by + bx + ay
1/ab+ac=a(b+c)
2/ab-ac+ad=a(b-c)+ad=a(b-c+d)
3/ax-bx-cx+dx=x(a-b-c)+xd=x(a-b-c+d)
4/a(b+c)-d(b+c)=(ab+ac)-(bd+cd)=b(a+d)-c(a+d)=a+d(b+c)
5/ac-ad+bc-bd=a(c-d)+b(c-d)=c-d(a+b)
6/ax+by+bx+ay=a(x+y)+b(x+y)=x+y(a+b)
1/ ab+ac=a(b+c)
2/ab-ac+ad=a(b-c+d)
3/ax-bx-cx+dx=x(a-b-c+d)
4/a(b+c)-d(b+c)=(b+c)(a-d)
5/ac-ad+bc-bd=a(c-d)+b(c-d)=(c-d)(a+b)
6/ax+by+bx+ay=a(x+y)+b(y+x)=(y+x)(a+b)
\(1,ab+ac\)
\(=a\left(b+c\right)\)
\(2,ab-ac+ad\)
\(=a\left(b-c+d\right)\)
\(3,ax-bx-cx+dx\)
\(=x\left(a-b-c+d\right)\)
\(4,a\left(b+c\right)-d\left(b+c\right)\)
\(=\left(b+c\right)\left(a-d\right)\)
\(5,ac-ad+bc-bd\)
\(=a\left(c-d\right)+b\left(c-d\right)\)
\(=\left(a+b\right)\left(c-d\right)\)
\(6,ax+by+bx+ay\)
\(=\left(ax+bx\right)+\left(by+ay\right)\)
\(=x\left(a+b\right)+y\left(a+b\right)\)
\(=\left(x+y\right)\left(a+b\right)\)
Viết dưới dạng tích các tổng sau :
1/ ab + ac
2/ ab - ac + ad
3/ ax - bx - cx + dx
4/ a( b + c ) - d( b + c )
5/ ac - ad + bc- bd
6/ ax + by + bx ay
1?
a(b+c)
a(b-c+d)
x(a-b-c+d)
(b+c)(a-d)
(c-d)(a+b)
(x+-y)(a+b)
Viết dưới dạng tích các tổng sau:
1/ ab+ ac
2/ ab - ac + ad
3/ ax - bx - cx + dx
4/ a(b + c) - d(b + c)
5/ ac - ad + bc - bd
6/ ax + by + bx + ay
1/ ab+ ac
=a(b+c)
2/ ab - ac + ad
=a(b-c+d)
3/ ax - bx - cx + dx
=x(a-b-c+d)
4/ a(b + c) - d(b + c)
=(a-d)(b+c)
5/ ac - ad + bc - bd
=a(c-d)+b(c-d)
=(a+b)(c-d)
6/ ax + by + bx + ay
=x(a+b)+y(b+a)
=(x+y)(b+a)
A) ab + ac=a.(b+c)
B)ab - ac + ad=a.(b-c+d)
C) ã-bx-cx+dx=x.(a-b-c+d)
D)a(b+c) - d(b+c)=(b+c).(a-d)
E) ac-ad+bc-bd=a.(c-d)+b.(c-d)=(c-d).(a+b)
G) ax+by+bx+ay=x.(a+b)+y.(b+a)=(a+b).((x.y)
1) \(ab+ac=a\left(b+c\right)\)
2) \(ab-ac+ad=a\left(b-c+d\right)\)
3) \(ax-bx-cx+dx=x\left(a-b-c+d\right)\)
4) \(a\left(b+c\right)-d\left(b+c\right)=\left(b+c\right)\left(a-d\right)\)
5) \(ac-ad+bc-bd=a\left(c-d\right)+b\left(c-d\right)=\left(a+d\right)\left(c-d\right)\)
6) \(ax+by+bx+ay=x\left(a+b\right)+y\left(a+b\right)=\left(x+y\right)\left(a+b\right)\)
Viết dưới dạng tích các tổng sau:
1/ ab + ac
2/ ab-ac + ad
3/ ax- bx -cx + dx
4/ a( b +c ) - d( b + c )
5/ ac - ad + bc - bd
6/ ax + by + bx + ay
1 . a(a+b)
2 . a(b-c+d)
2 . x(a-b-c+d)
4 (b+c)(a-d)
5 ac-d) + b(c-d) = (c-d)(a+b)
6 x(a+b)+y(a+b)= (a+b)(x+y)
1/ a(b+c)
2/ a(b-c+d)
3/ x(a-b-c+d)
4/ (a-d)(b+c)
5/ (a+b)(c-d)
6/ (a+b)(x+y)
viết dưới dạng tích các tổng sau
ab + ac
ab - ac + ad
ax - bx - cx + dx
a) ab+ac= a(b+c)
b) ab-ac+ad= a(b-c+d)
c) ax-bx-cx+dx= x(a-b-c+d)
a.(b+c)
a.(b-c+d)
x.(a-b-c+d)
Mk chắc chắn 100% luôn, k mk nha
\(ab+ac=a\left(b+c\right)\)
\(ab-ac+ad=a\left(b+c+d\right)\)
\(ax-bx-cx+dx=x\left(a-b-c+d\right)\)
k mk nha bn
thank you
Viết dưới dạng tích của các tổng sau:
1) ab - ac + ad
2) ax - bx - cx + dx
3) a.( b + c ) - d . ( b + c )
4) ac - ad + bc - bd
5) ax + by + bx + ay
ĐẶT NHÂN TỬ CHUNG NHA!
1) ab - ac + ad = a( b- c +d )
2) ax - bx - cx + dx = x( a-b-c+d)
3) a.( b + c ) - d . ( b + c )= (b+c)(a-d)
4) ac - ad + bc - bd = a( c-d) + b( c-d) = (a+b)(c-d)
5) ax + by + bx + ay= a( x+y) + b( x+y) = (a+b)(x+y)
Bài 2: Viết dưới dạng tích các tổng sau
1 ab+ ac
2 ab-ac+ad
3ax-bx-cx+dx
4 a(b+c)-d(b+c)
5 ac-ad+bc-bd
6 ax+by+bx+ay
giúp mình nha
1, ab + ac = a(b+c)
2, ab - ac + ad = a(b-c+d)
3, ax-bx-cx+dx = x(a-b-c+d)
4, a(b+c) - d(b+c) = (a-d)(b+c)
5, ac-ad+bc-bd = a(c-d) + b(c-d) = (a+b)(c-d)
6, ax+by+bx+ay=ax+ay+bx+by=a(x+y)+b(x+y)=(a+b)(x+y)
a(b+c)
a(b-c+d)
x(a-b-c+d)
(b+c)(a-d)
a(c-d)+c(c-d)=(c-d)(a+c)
a(x+y)+b(x+y)=(x+y)(a+b)
T
Viết dưới dạng tích các tổng sau : ab+ac ; ab -ac+ad; ax -bx-cx+dx; a(b+c) - d (b+c); ac-ad+bc-bd; ax+by+bx+ay
ab + ac = a(b + c)
ab - ac + ad = a(b - c + d)
ax - bx - cx + dx
=x(a - b - c + d)
ab+ac=a(b+c)
ab-ac+ad=a(b-c+d)
ax-bx-cx+dx=x(a-b-c+d)