tìm n thuộc N sao cho 23^n+1971 là số chính phương
tìm n thuộc N để 23n + 1971 là số chính phương
Tìm các số tự nhiên n sao cho \(23^n+1971\) là số chính phương
tìm \(n\in N\) sao cho \(23^n+1971\) là số chính phương.
TH1: n = 2k+1 (k∈N) (tức là n lẻ)
\(23^n\)+1971 chia 3 dư 2 => không là số chính phương
TH2: n=2k (tức là n chẵn)
\(^{23^n}\)+1971= \(23^{2k}\)+1971=> \(a^2\)(a−\(23^k\))(a+\(23^k\))= 1971 = 1.1971= 27.73
(a và 23 không chia hết cho 3 nên ta loại bớt trường hợp a−\(23^k\) , a+\(23^k\) đồng thời chia hết 3)
Giải hệ phương trình trên, được k=1 hay n=2
mọi người giúp mk vs nha,mk đang cần gắp lắm ạ
1.chứng minh rằng với mọi n thuộc N số A=9n^2+27n+7 không thể là lập phương đúng
2.tìm n thuộc N sao cho 9+2^n là số chính phương
3.tìm n thuộc N sao cho 3^n+19 là số chính phương
4.tìm n thuộc Z sao cho n^4+2n^3+2n^2+n+7 là số chính phương
Tìm n thuộc N sao cho 2^n+15 là số chính phương
https://olm.vn/hoi-dap/question/99410.html
Đây là link trang có đáp án. Bạn vào xem cho nhanh nhé
Tìm n thuộc N sao cho n2+2n+30 là số chính phương
Tìm n thuộc N sao cho n ^ 2 + n + 1589 là số 1 chính phương
Để \(n^2+n+1589\) là số chính phương thì \(n^2+n+1589=a^2\left(a\in Z\right)\)
\(\Leftrightarrow4n^2+4n+6356=4a^2\)
\(\Leftrightarrow\left(4n^2+4n+1\right)+5355=\left(2a\right)^2\)
\(\Leftrightarrow\left(2n+1\right)^2-\left(2a\right)^2=-5355\)
\(\)\(\Leftrightarrow\left(2n-2a+1\right)\left(2n+2a+1\right)=-5355\)
Từ đây xét 2n - 2a + 1 ; 2n + 2a + 1 là các ước của - 5355 là ra
\(n^2+n+1589\)
\(n^2+n+1589=m^2\)
\(\Rightarrow\left(4n^2+1\right)^2+6355=4m^2\)
\(\Leftrightarrow\left(2m+2n+1\right)\left(2m-2n-1\right)=6355\)
\(2m+2n+1>2m-2n-1>0\)
Ta viết:\(\left(2m+2n+1\right)\left(2m-2n-1\right)=6355\cdot1=1271\cdot5=205\cdot31=155\cdot414\)
\(\Rightarrow n=\text{ 1588,316,43,28}\)
Tìm n thuộc N sao cho n2+2n+200 là số chính phương
Ban tham khao nk :
x^2+2x+200 = k^2 (với k thuộc N)
k^2-(x^2+2x+1) =199
k^2-(x+1)^2 =199
(k-x-1)(k+x+1)=199 [áp dụng hằng đẳng thức a^2-b^2=(a+b)(a-b)
Vì 199 là số nguyên tố, và x là số tự nhiên suy ra:
{k-x-1=1......(1)
{k+x+1=199....(2)
Từ (1) và (2) ta đựoc: [lấy 2 trừ 1]
x =98
tìm n thuộc N* sao cho S=1!+2!+3!+......+n! là số chính phương
Để S là số chính phưong => 1! + 2! + 3! + ... + n! = m^2
Với n = 1 thì S = 1! = 1 là số chính phưong
Với n = 2 thì S = 1! + 2! = 3 không là số chính phưong
Với n = 3 thì S = 1! + 2! + 3! = 9 là số chính phưong
Với n = 4 thì S = 1! + 2! + 3! + 4! = 33 không là số chính phưong
Với n > 5 thì S có tạn cùng là 3 ( Vì 5! tạn cùng là 0, 6!, 7!, 8!, ... cũng tận cùng là 0 cộng với 33 là tổng các giai thùă của bốn số đầu khác 0)
Vậy n = 1; n = 3
Để S là số chính phưong => 1! + 2! + 3! + ... + n! = m^2
Với n = 1 thì S = 1! = 1 là số chính phưong
Với n = 2 thì S = 1! + 2! = 3 không là số chính phưong
Với n = 3 thì S = 1! + 2! + 3! = 9 là số chính phưong
Với n = 4 thì S = 1! + 2! + 3! + 4! = 33 không là số chính phưong
Với n > 5 thì S có tạn cùng là 3 ( Vì 5! tạn cùng là 0, 6!, 7!, 8!, ... cũng tận cùng là 0 cộng với 33 là tổng các giai thùă của bốn số đầu khác 0)
Vậy n = 1; n = 3