B=2^1+2^2+2^3+...+2^30. CMR Bchia hết cho 21
B=21+22+23+....22016. Chứng minh Bchia hết cho 21
Cho \(B=2^1+2^2+2^3+...+2^{30}\). CMR: B chia hết cho 21
Ta có \(B=2^1+2^2+2^3+...+2^{30}\)
\(\Rightarrow2B=2^2+2^3+2^4+...+2^{31}\)
\(\Rightarrow B=2B-B=\)\(\left(2^2+2^3+2^4+...+2^{31}\right)-\left(2^1+2^2+2^3+...+2^{30}\right)\)
\(\Leftrightarrow B=2^{31}-2=2\left(2^{30}-1\right)=2\left(8^{10}-1\right)\)
Mà \(8^{10}-1⋮\left(8-1\right)\Leftrightarrow8^{10}-1⋮7\) (1)
Mặt khác \(8^{10}-1=\left(9-1\right)^{10}-1=BS3+1-1=BS3\left(2\right)\)
(1) ; (2) và (7;3) = 1 \(\Rightarrowđpcm\)
B = 2 + 2^2 + 2^3 + .... + 2^30 CMR B chia hết cho 21
https://olm.vn/hoi-dap/detail/10895113383.html
B=(2+2^2+2^3+2^4+2^5+2^6)+...(2^30+2^29+2^28+2^27+2^26+2^25)
B=(2+2^2+2^3+2^4+2^5+2^6)+...+2^25(2+2^2+2^3+2^4+2^5+2^6)
B= 126+...+2^25*126
B=21*6(1+...+2^25) chia hết cho 21
suy ra b chia hết cho 21
kl: vậy B=.... chia hết cho 21
B=1+2+2^2+2^3+...+2^1499
Chứng minh Bchia hết cho 13
Ta có:
B=1+2+22+23+...+21499
B=(1+2)+(22+23)+...+(21498+21499)
B=3+22(1+2)+...+21498(1+2)
B=3+22.3+...+21498.3
B=3(1+22+...+21498)
\(\Rightarrow B⋮3\)
Vậy\(B⋮3\)
b = 3 mũ 1 + 3 mũ 2 + 3 mũ 3 + 3 mũ 4 + 3 mũ 5 + chấm chấm chấm + 30 mũ 30 chứng minh Bchia hết cho13
B = 31 + 32 + 33 + ... + 328 + 329 + 330
B = ( 31 + 32 + 33 ) + ... + ( 328 + 329 + 330 )
B = 31 . ( 1 + 3 + 32 ) + ... + 328 . ( 1 + 3 + 32 )
B = 31 . 13 + ... + 328 . 13
B = 13 . ( 3 + ... + 328 ) \(⋮\)13
Vậy B \(⋮\)13 ( dpcm )
\(B=3^1+3^2+3^3+3^4+3^5+............+3^{30}\)
\(\Rightarrow B=\left(3^1+3^2+3^3\right)+\left(3^4+3^5+3^6\right)+............+\left(3^{28}+3^{29}+3^{30}\right)\)
\(\Rightarrow B=3^1.\left(1+3+3^2\right)+3^4.\left(1+3+3^2\right)+.........+3^{28}.\left(1+3+3^2\right)\)
\(\Rightarrow B=3^1.13+3^4.13+.........+3^{28}.13\)
\(\Rightarrow B=13\left(3^1+3^4+.........+3^{28}\right)\)
Mà 13 \(⋮\)13 \(\Rightarrow13\left(3^1+3^4+...........+3^{28}\right)⋮13\)
Vậy B chia hết cho 13
Cho B = 2 + 22+23+.....+230. CMR B chia hết 21
Ta có : 21 = 3 . 7
Mà 3 và 7 nguyên tố cùng nhau
=> B \(⋮\)21 khi B \(⋮\)3 và B \(⋮\)7
\(B=2+2^2+2^3+...+2^{30}\)\(\Rightarrow B=\left(2+2^2\right)+\left(2^3+2^4\right)+...+\left(2^{29}+2^{30}\right)\)
\(\Rightarrow B=2.\left(2^0+2^1\right)+2^3.\left(2^0+2^1\right)+...+2^{29}.\left(2^0+2^1\right)\)
\(\Rightarrow B=2.3+2^3.3+...+2^{29}.3\)
\(\Rightarrow B=3.\left(2+2^3+...+2^{29}\right)⋮3\)( 1 )
\(B=2+2^2+2^3+...+2^{30}\)\(\Rightarrow B=\left(2+2^2+2^3\right)+\left(2^4+2^5+2^6\right)+...+\left(2^{28}+2^{29}+2^{30}\right)\)
\(\Rightarrow B=2.\left(2^0+2^1+2^2\right)+2^4.\left(2^0+2^1+2^2\right)+...+2^{28}.\left(2^0+2^1+2^2\right)\)
\(\Rightarrow B=2.7+2^4.7+...+2^{28}.7\)
\(\Rightarrow B=7.\left(2+2^4+...+2^{28}\right)⋮7\)( 2 )
Từ ( 1 ) và ( 2 )
\(\Rightarrow B⋮3.7\)
\(\Rightarrow B⋮21\)
B= 2+ 22+ 23+...+ 229+ 230.
B có số các số hạng là:
( 30- 1): 1+ 1= 30( số)
* Ta ghép 2 số hạng vào 1 nhóm được 15 nhóm.
=> B=( 2+ 22)+( 23+ 24)+( 25+ 26)+...+( 227+ 228)+( 229+ 230).
=> B= 2( 1+ 2)+ 23( 1+ 2)+ 25( 1+ 2)+...+ 227( 1+ 2)+ 229( 1+ 2).
B= 2. 3+ 23. 3+ 25. 3+...+ 227. 3+ 229. 3.
B= 3( 2+ 23+ 25+...+ 227+ 229)\(⋮\)3.
=> B\(⋮\) 3( 1)
* Ta ghép 3 số hạng vào 1 nhóm được 10 nhóm.
=> B=( 2+ 22+ 23)+( 24+ 25+ 26)+( 27+ 28+ 29)+...+( 225+ 226+ 227)+( 228+ 229+ 230).
B= 2( 1+ 2+ 22)+ 24( 1+ 2+ 22)+ 27( 1+ 2+ 22)+...+ 225( 1+ 2+ 22)+ 228( 1+ 2+ 22).
B= 2. 7+ 24. 7+ 27. 7+...+ 225. 7+ 228. 7.
B= 7( 2+ 24+ 27+...+ 225+ 228)\(⋮\) 7.
=> B\(⋮\) 7( 2).
( 3; 7)= 1( 3).
Từ( 1);( 2);( 3)
=> B\(⋮\) 21.
=> đpcm.
CMR:
a) 14^14 -1 chia hết cho 3
b) 2009^2009-1 chia hết cho 2008
c) A= 2+ 2^2+...+2^60 chia hết cho 21 và 15
d) B= 5 + 5^2+...+5^12 chia hết cho 30 và 31
e) C= 1+3+3^2+...+3^11 chia hết cho 52
A, CHO A= 1/12+1/22+1/23+...+1/502 CMR A<2
B,CHO B= 21+22+23+...+230 CMR B CHIA HẾT CHO 21
GIÚP TUI LIỀN NHA VÌ TUI CẦN GẤP
a, \(A=1+\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{50^2}\)
\(A< 1+\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{49.100}\)
\(A< 1+1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{49}-\frac{1}{50}\)
\(A< 2-\frac{1}{50}\)
\(A< 2\)
b, \(B=2+2^2+2^3+...+2^{30}\)
Ta có :\(B=\left(2+2^2\right)+\left(2^3+2^4\right)+...+\left(2^{29}+2^{30}\right)\)
\(B=2\left(1+2\right)+2^3\left(1+2\right)+...+2^{29}\left(1+2\right)\)
\(B=2.3+2^3.3+...+2^{29}.3\)
\(B=3\left(2+2^3+...+2^{29}\right)\)chia hết cho 3(1)
Lại có\(B=\left(2+2^2+2^4\right)+...+\left(2^{28}+2^{29}+2^{30}\right)\)
\(B=2\left(1+2+4\right)+...+2^{28}\left(1+2+4\right)\)
\(B=2.7+...+2^{28}.7\)
\(B=7\left(2+...+2^{29}\right)\) chia hết cho 7 (2)
Mà (3,7)=1 (3)
Từ (1)(2)(3) => B chia hết cho 21
CHO \(A=2^1+2^2+2^3+2^4+...+2^{30}\)
CMR A chia hết cho 21