CHO A=1/2.3/4.5/6...199/200
CHỨNG MINH RẰNG A^2<1/101
MONG CÁC BẠN GIÚP
Cho A=1/2.3/4.5/6...199/200. Chứng minh rằng A2 < 1/201
A=[(3²-1)/3²].[(4²-1)/4²].[(5²-1)/5²] …[(50²-1)/50²]
=(3-1)(3+1)(4-1)(4+1)(5-1)(5+1)…(50-1)(... /(3².4².5²…50²)
= (3-1).(4-1).(5-1) … (50-1) .(3+1).(4+1).(5+1) … (50+1) (3².4².5²…50²)
= 2.3.4 …49 . 4.5.6…51 /(3².4².5²…50²)
=2.3. (4.5…49 . 4.5 … 49) . 50. 51 /(3².4².5²…50²)
= 2.3.50.51(4².5²…49²)/(3².4².5²…50²)
=2.3.50.51/(3².50²)
=2.51/(3.50)=102/150=17/25
2/Cho dãy số: 1(1/3); 1(1/8); 1(1/15); 1(1/24); 1(1/35); ...
Có lẽ viết 1(1/3) là hỗn số tương đương với 4/3.
a) Số hạng tổng quát : 1[1/[(n+1)²-1)] = (n+1)²/[(n+1)²-1]=(n+1)²/[n(n+1)]
b)
(đây là nghịch đảo của bài 1. Mẫu số phân tích tương tự tử số ở bài 1)
Tích của 98 số hạng đầu là:
P=[2²/(2²-1)].[3²/(3²-1)][4²/(4²-1)] …[99²/(99²-1)]
= (2².3².4²…99²) /[(2²-1).(3²-1)… (99²-1)]
= (2².3².4²…99²) /[(2-1).(3-1)… (99-1) . (2+1).(3+1)… (99+1)]
= (2².3².4²…99²) /[1.2.3… 98 . 3.4… 98.99.100]
= (2².3².4²…99²) /[1.2.(3… 98 . 3.4… 98).99.100]
= (2².3².4²…99²) /[1.2.(3… 98 . 3.4… 98).99.100]
= (2².3².4²…99²) /[1.2.(3… 98 . 3.4… 98).99.100]
= (2².99²) /[1.2.99.100]
=(2.99)/(1.100)
=99/50
3)
C= (1/2).(3/4).(5/6).....(199/200).
C= (1.3.5….199)/(2.4.6…200)
C²= 1².3².5²….199²/(2².4².6²…200²)
Ta có: k²>k²-1=(k-1)(k+1) nên 2²>1.3; 4²>3.5 … 200²>199.201.
=>
C² < 1².3².5²….199²/[(1.3).(3.5).(5.7)…(199.2...
=1².3².5²….199²/(1.3.3.5.5.7…199.201)
=1².3².5²….199²/(1.3².5².7²…199².201)
=1/201
4)
(cũng tương tự như bài 3)
D= (1/2).(3/4).(5/6)…(99/100)
D=(1.3.5..99)/(2.4.6…100)
D²=(1².3².5²..99²)/(2².4².6²…100²)
Làm nhỏ bớt mẫu số bởi: (k-1)(k+1)<k²
D²=[(1².3².5²… 99²)]/(2².4².6²…100²)
< 1².3².5²…99²/(1.3.3.5.5.7…99.01)
=1².3².5²…99²/(1.3².5².7²…99².101)
=1/101<1/100=1/10²
=>D<1/10
D²=(1².3².5²…99²)/(2².4².6²…100²)
Giảm tử số bởi k²>(k-1)(k+1)
D²=(1².3².5²..99²)/(2².4².6²…100²)
>1².(2.4)(4.6)…(98.100) /(2².4².6²…100²)
=2.4.4.6.6.8….96.98.98.100/(2².4².6²…10...
=2.4².6²…98².100/(2².4².6²…100²)
=2.100/(2².100²)
=1/200 > 1/225=1/15²
=>D>1/15
Cho C=1/2.3/4.5/6...199/200. Chứng minh rằng A2 < 1/201
cho A=1/2.3/4.5/6....199/200. cmr A^2 < 1/201
Cho C=1/2.3/4.5/6......199/200 chứng minh C^2 < 1/201[các dấu chấm là dấu nhân]
C= (1.3.5.....199)/(2.4.6.....200)
=> C^2= (1^2. 3^2. 5^2......199^2)/(2^2. 4^2. 6^2......200^2)
Ta có k^2 > k^-1 = (k-1)(k+1) nên 2^2 > 1.3
4^2 > 3.5
....
200^2 > 199.201
=> C^2 < (1^2.3^2.5^2.....199^2) / (1.3)(3.5)(5.7).....(199.201)
ta có: (1^2.3^2.5^2.....199^2) / (1.3)(3.5)(5.7).....(199.201)
=1/201
Do đó C^2 <1/201
Vậy C^2 < 1/201
Ta có : \(C=\frac{1}{2}\times\frac{3}{4}\times.....\times\frac{199}{200}\)
\(\Rightarrow C< \frac{2}{3}\times\frac{4}{5}\times.......\times\frac{200}{201}\)
\(\Rightarrow C^2< \frac{2}{3}\times\frac{4}{5}\times......\times\frac{200}{201}\times\frac{1}{2}\times\frac{3}{4}\times.....\times\frac{199}{200}\)
\(\Rightarrow C^2< \frac{1}{2}\times\frac{2}{3}\times\frac{3}{4}\times........\times\frac{199}{200}\times\frac{200}{201}\)
\(\Rightarrow C^2< \frac{1}{201}\left(đ.p.c.m\right)\)
Vũ quang Anh ơi bạn có phải là học sinh trường trung học cơ sở lê thánh tông ko
Cho D=1/2.3/4.5/6.....199/100. Chứng minh: 1/15<D<1/10
Phân tích D ra từng cách tính thuận lợi
Chứng minh phân số đó nhỏ hơn 1/10 và lớn hơn 1/15
♥♥♥
A,Cho S=1/2.3/4.5/6.7/8...99/100
chứng minh rằng S<0,01
b,cho A=1/2.3/4.5/6.7/8...79/80 Chứng minh rằng A<1/9
Cho A=1/2.3/4.5/6...99/100. Chứng minh rằng 1/15<A<1/10
Cho A= 1/2.3/4.5/6....99/100. Chứng minh rằng: 1/15 < A < 1/10
Để chứng minh A<1/10 thì ta chứng minh A<2/3.4/5.6/7....100/101
Để chứng minh A>1/15 thì ta chứng minh A>1/2.2/3.4/5.98/99
A=1/2.3/4.5/6...99/100
Chứng minh rằng A^2>1/201
32476387219634651600.613130+6.56.12654920586246194369163412091.54631334196131+63413+423674504+40161*-40215621-03415101101643.4106.2123450241.40
12205422+
4103412503212546312231213.1020.0101010201.41021+074-+5202420859*524242072-426345744565474247322431423-l\;./l\/+256594512=