Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
homaunamkhanh
Xem chi tiết
Đặng Ngọc Quỳnh
13 tháng 1 2021 lúc 21:11

Ta có: \(A=\frac{x^2+25x+144}{x}=x+\frac{144}{x}+25\)

Các số dương : x và \(\frac{144}{x}\) có tích k đổi nên tổng nhỏ nhất và chỉ khi  \(x=\frac{144}{x}\)=> x=12

Vậy Min A = 49 khi và chỉ khi x=12

Khách vãng lai đã xóa
Nobi Nobita
13 tháng 1 2021 lúc 21:31

\(A=\frac{\left(x+16\right)\left(x+9\right)}{x}=\frac{x^2+25x+144}{x}=x+25+\frac{144}{x}\)

Vì \(x>0\)\(\Rightarrow\) Áp dụng bđt Cô si ta có:

\(x+\frac{144}{x}\ge2\sqrt{x.\frac{144}{x}}=2.\sqrt{144}=2.12=24\)

Dấu " = " xảy ra \(\Leftrightarrow x=\frac{144}{x}\)\(\Leftrightarrow x^2=144\)\(\Leftrightarrow x=12\)( do \(x>0\))

\(\Rightarrow A\ge25+24=49\)

Vậy \(minA=49\)\(\Leftrightarrow x=12\)

Khách vãng lai đã xóa
l҉o҉n҉g҉ d҉z҉
13 tháng 1 2021 lúc 21:13

\(A=\frac{\left(x+16\right)\left(x+9\right)}{x}=\frac{x^2+25x+144}{x}=x+25+\frac{144}{x}\)

Với x > 0, áp dụng bđt Cauchy ta có :

\(A=x+25+\frac{144}{x}\ge2\sqrt{x\cdot\frac{144}{x}}+25=24+25=49\)

Đẳng thức xảy ra khi x = 12

Vậy MinA = 49, đạt được khi x = 12

Khách vãng lai đã xóa
Sử Nữ
Xem chi tiết

Ta có : \(A=\frac{x^2+25x+144}{x}=x+\frac{144}{x}+25\)

Các số dương \(x\)và \(\frac{144}{x}\)Có tích ko đổi nên tổng nhỏ nhất khi và chỉ khi \(x=\frac{144}{x}\)

\(\Rightarrow x=12\)

Vậy \(Min\)\(A=49\Leftrightarrow x=12\)

Nguyễn Văn Tuấn Anh
18 tháng 8 2019 lúc 15:19

Ta có: 

\(A=\frac{\left(x+16\right)\left(x+19\right)}{x}\)

\(=\frac{x^2+25x+144}{x}=\frac{\left(x+12,5\right)^2-12,25}{x}\)

\(=\frac{\left(x+12,5\right)^2}{x}-\frac{12,25}{x}\ge\frac{-12,5}{x}\forall x>0\)

Đến đây dễ rồi bạn tự làm nốt !

lưu viết vĩ
Xem chi tiết
Nguyễn Minh Đức
Xem chi tiết
Nguyễn Minh Đức
Xem chi tiết
Lee Saa
27 tháng 9 2020 lúc 15:36

Mình cũng thắc mắc câu này ;-;

Khách vãng lai đã xóa
FL.Han_
27 tháng 9 2020 lúc 15:40

Ta có:

\(\left|x-\frac{3}{4}\right|+\left|x+\frac{9}{7}\right|=\left|\frac{3}{4}-x\right|+\left|x+\frac{9}{7}\right|\ge\left|\frac{3}{4}-x+x+\frac{9}{7}\right|=\frac{57}{28}\)

=> \(28\cdot\left(\left|x-\frac{3}{4}\right|+\left|x+\frac{9}{7}\right|\right)\ge57\left(\forall x\right)\)

Dấu "=" xảy ra khi: \(\left(\frac{3}{4}-x\right)\left(x+\frac{9}{7}\right)\ge0\Rightarrow-\frac{9}{7}\le x\le\frac{3}{4}\)

Vậy \(Min=28\Leftrightarrow-\frac{9}{7}\le x\le\frac{3}{4}\)

Khách vãng lai đã xóa
Nobi Nobita
27 tháng 9 2020 lúc 15:42

Đặt \(A=\left|x-\frac{3}{4}\right|+\left|x+\frac{9}{7}\right|\)

\(\Rightarrow A=\left|\frac{3}{4}-x\right|+\left|x+\frac{9}{7}\right|\ge\left|\frac{3}{4}-x+x+\frac{9}{7}\right|=\left|\frac{57}{28}\right|=\frac{57}{28}\)

Dấu " = " xảy ra \(\Leftrightarrow\left(\frac{3}{4}-x\right)\left(x+\frac{9}{7}\right)\ge0\)

TH1: \(\hept{\begin{cases}\frac{3}{4}-x\le0\\x+\frac{9}{7}\le0\end{cases}}\Leftrightarrow\hept{\begin{cases}\frac{3}{4}\le x\\x\le\frac{-9}{7}\end{cases}}\Leftrightarrow\hept{\begin{cases}x\ge\frac{3}{4}\\x\le\frac{-9}{7}\end{cases}}\)( vô lý )

TH2: \(\hept{\begin{cases}\frac{3}{4}-x\ge0\\x+\frac{9}{7}\ge0\end{cases}}\Leftrightarrow\hept{\begin{cases}\frac{3}{4}\ge x\\x\ge\frac{-9}{7}\end{cases}}\Leftrightarrow\hept{\begin{cases}x\le\frac{3}{4}\\x\ge\frac{-9}{7}\end{cases}}\Leftrightarrow\frac{-9}{7}\le x\le\frac{3}{4}\)

\(\Rightarrow28.\left(\left|x-\frac{3}{4}\right|+\left|x+\frac{9}{7}\right|\right)\ge28.\frac{57}{28}=57\)

Dấu " = " xảy ra \(\Leftrightarrow-\frac{9}{7}\le x\le\frac{3}{4}\)

Vậy GTNN của biểu thức đã cho là \(57\)\(\Leftrightarrow-\frac{9}{7}\le x\le\frac{3}{4}\)

Khách vãng lai đã xóa
Lê Quốc Vương
Xem chi tiết
Nguyễn Nhật Minh
30 tháng 12 2015 lúc 12:14

Bài này thắng làm  rồi 

Vương Thị Thanh Thảo
Xem chi tiết
Mai Quốc Bình
Xem chi tiết
Sam Sam
Xem chi tiết
Hoàng Thị Lan Hương
12 tháng 7 2017 lúc 9:17

ĐK  \(\hept{\begin{cases}x\ge0\\x\ne9\end{cases}}\)

a, \(R=\frac{2\sqrt{x}\left(\sqrt{x}-3\right)+\sqrt{x}\left(\sqrt{x}+3\right)-3\left(\sqrt{x}+3\right)}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}:\frac{2\sqrt{x}-2-\sqrt{x}+3}{\sqrt{x}-3}\)

\(=\frac{3x-6\sqrt{x}-9}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}.\frac{\sqrt{x}-3}{\sqrt{x}+1}=\frac{3\left(\sqrt{x}+1\right)\left(\sqrt{x}-3\right)}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}.\frac{\sqrt{x}-3}{\sqrt{x}+1}\)

\(=\frac{3\left(\sqrt{x}-3\right)}{\sqrt{x}+3}\)

b. \(R< -1\Rightarrow R+1< 0\Rightarrow\frac{3\sqrt{x}-9+\sqrt{x}+3}{\sqrt{x}+3}< 0\Rightarrow\frac{4\sqrt{x}-6}{\sqrt{x}+3}< 0\)

\(\Rightarrow0\le x< \frac{9}{4}\)

c. \(R=\frac{3\left(\sqrt{x}-3\right)}{\sqrt{x}+3}=3+\frac{-18}{\sqrt{x}+3}\)

Ta thấy \(\sqrt{x}+3\ge3\Rightarrow\frac{-18}{\sqrt{x}+3}\ge-6\Rightarrow3+\frac{-18}{\sqrt{x}+3}\ge-3\Rightarrow R\ge-3\)

Vậy \(MinR=-3\Leftrightarrow x=0\)