Cho hpt \(\hept{\begin{cases}\left(a+1\right)x-ay=5\\x+ay=a^2+4a\end{cases}}\)
Tìm a nguyên để hpt có nghiệm duy nhất ( x ; y ) với x ; y nguyên
Tìm a để hpt có nghiệm duy nhất
\(\hept{\begin{cases}y^2=x^3-4x^2+ax\\x^2=y^3-4y^2+ay\end{cases}}\)
Hệ \(\hept{\begin{cases}y^2=x^3-4x^2+ax\\x^2=y^3-4y^2+ay\end{cases}}\)
Trừ vế theo vế của 2 pt trên ta đc
\(\left(x-y\right)\left(x^2+y^2+xy-3x-3y+a\right)=0\)(chỗ này mk làm hơi tắt , bn cố hiểu nhé ^^ )
*Nếu x=y thay vào phương trình đầu ta có
\(x^3-5x^2+ax=0\)
\(\Leftrightarrow x\left(x^2-5x+a\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=y=0\\x^2-5x+a=0\left(1\right)\end{cases}}\)Để hpt có nghiệm duy nhất x=y=0 thì pt (1) phải vô nghiệmPt (1) vô nghiệm \(\Leftrightarrow\Delta< 0\Leftrightarrow a>\frac{25}{4}\)( Cái này chắc bn hiểu :> )Ta thấy hpt luôn có nghiệm x = y = 0 * Nếu \(x\ne y\) thì \(x^2+x\left(y-3\right)+y^2-3y+a=0\)và pt này phải vô nghiệm vì đã có 1 cặp nghiệm x=y=0 rồiPt này vô nghiệm \(\Leftrightarrow\Delta< 0\) \(\Leftrightarrow\left(y-3\right)^2-4\left(y^2-3y+a\right)< 0\) \(\Leftrightarrow-3y^2+6y+9-4a< 0\)Luôn đúng vì \(a>\frac{25}{4}\)Vậy để hpt có nghiệm duy nhất thì \(a>\frac{25}{4}\)P/S: Cách này có lẽ hơi trìu tượng -_- và có thể có 1 vài lỗi sai , mog bn thông cảm ^^mk cx lm theo cách này nhưng thay mk kêu sai
thế á ? Thế thì mik cũng chả biết nữa . Thế thầy cậu đã chữa bài này chưa ?
Cho hpt:
\(\hept{\begin{cases}3x+\left(m-1\right)y=12\\\left(m-1\right)x+12y=24\end{cases}}\)
a) Tìm m để hpt có 1 nghiệm duy nhất thỏa mãn x + y = -1
b) Tìm m nguyên để hpt có 1 nghiệm duy nhất là nghiệm nguyên
cho hpt \(\hept{\begin{cases}\text{ax}+y=1\\2x-ay=3\end{cases}}\)
a. cmr với mọi a hệ có nghiệm duy nhất
b. tìm các giá trị của a để hpt có nghiệm duy nhất (x;y) thoả mãn x>0, y>0
cho hpt \(\hept{\begin{cases}ax+y=1\\2x-ay=3\end{cases}}\)
a. cmr với mọi a hệ có nghiệm duy nhất
b. tìm các giá trị của a để hpt có nghiệm duy nhất (x;y) thoả mãn x>0, y>0
Cho hpt :\(\hept{\begin{cases}x+my=m+1\left(1\right)\\mx+y=3m-1\left(2\right)\end{cases}}\)
a. Giải hpt khi m=1
b. Tìm m để hpt có nghiệm duy nhất mà x=/y/.
1. Giải hệ PT:
\(\hept{\begin{cases}2x+ay=-4\\ax-3y=5\end{cases}}\)
2. \(\hept{\begin{cases}2x-ay=b\\ax+by=1\end{cases}}\)
Tìm a,b để hệ có vô số nghiệm
3. \(\hept{\begin{cases}x+ay=a+1\\ax+y=3a-1\end{cases}}\)
a) Giải và biện luận hpt
b) Tìm a để hệ có nghiệm duy nhất thỏa mãn đk xy nhỏ nhất
Giúp mình với TT. Ai giải được nhanh, đúng nhất mình sẽ tick nha ^^
bn tham khảo trang https://www.slideshare.net/bluebookworm06_03/tng-hp-h-pt
Cho hpt: \(\hept{\begin{cases}\left(2m+1\right)x-3y=3m-2\\\left(m+3\right)x-\left(m+1\right)y=2m\end{cases}}\)
a)Tìm m để hpt có nghiệm.
b) Tìm m để hpt có nghiệm duy nhất(x,y) thỏa \(x\ge2y\)
c)Tì m để hpt có nghiệm duy nhất (x;y) sao cho biể thức P=\(x^2+3y^2\)
Cho HPT: \(\hept{\begin{cases}x-ay=x\\ax+y=2\end{cases}}\)
Xác định a để nghiệm có nguyên dương
hệ pt <=> ay = x-x = 0
ax+y = 2
<=> ay = 0
ax+y = 2
<=> a=0 hoặc y=0
ax+y = 2
+, Nếu a = 0 thì hệ pt <=> 0x = 0
y = 2
=> hệ pt vô số nghiệm
+, Nếu a khác 0 => y = 0 thì hệ pt
<=> 0x = 0
ax = 2
Để pt có nghiệm nguyên dương hay x thuộc N sao thì a thuộc N sao và a thuộc ước của 2
=> a thuộc {1;2}
Vậy ................
P/S : tham khảo xem đúng ko nha
cho hpt \(\hept{\begin{cases}\left(m-2\right)x-3y=-5\\x+my=3\end{cases}}\)
Cmr hpt trên có nghiệm duy nhất với mọi M. Tìm nghiệm nguyên duy nhất đó theo m
PLEASE HELP ME
Từ đề ta rút ra pt \(\frac{\left(m-2\right)x+5}{3}=\frac{3-x}{m}\)
\(\Leftrightarrow m^2x-2mx+5m-9+3x=0\\ \Leftrightarrow x\left(m^2-2m+3\right)+5m-9=0\)
Vì đây là pt bậc nhất nên chỉ có 1 nghiệm duy nhất\(x=\frac{9-5m}{m^2-2m+3}\)
\(D=m\left(m-2\right)+3=m^2-2m+3\)
hpt có nghiệm duy nhất\(\Leftrightarrow D\ne0\)mà \(D=m^2-2m+3=\left(m-1\right)^2+2\ne0,\forall m\)
\(\Rightarrow\)hpt luôn có nghiệm duy nhất
nghiệm duy nhất đó là:\(\hept{\begin{cases}x=\frac{D\left(x\right)}{D}\\y=\frac{D\left(y\right)}{D}\end{cases}}\)\(\Leftrightarrow\hept{\begin{cases}x=\frac{-5m+9}{m^2-2m+3}\\y=\frac{3m-1}{m^2-2m+3}\end{cases}}\)