Cho phân số M = 6n-1/3n-2
a, Tìm n để M có giá trị là số nguyên tố
b, Tìm n để Mcó giá trị nhỏ nhất
Cho phân số M = 6n - 1 / 3n+2 (n thuộc Z)
a, tìm số nguyên n để M có giá trị nguyên
b, tìm số nguyên n để M có giÁ TRỊ NHỎ NHẤT . tìm giá trị nhỏ nhất đó
mk giải câu a thui nha
để \(\frac{6n-1}{3n+2}\)là số nguyên thì:
(6n-1) sẽ phải chia hết cho(3n+2)
mà (3n+2) chja hết cho (3n+2)
=> 2(3n+2) cx sẽ chia hết cho (3n+2)
<=> (6n+4) chia hết cho (3n+2)
mà (6n-1) chia hết cho (3n+2)
=> [(6n+4)-(6n-1)] chja hết cho (3n+2)
(6n+4-6n+1) chja hết cho 3n+2
5 chia hết cho3n+2
=> 3n+2 \(\in\){1,5,-1,-5}
ta có bảng
3n+2 | 1 | 5 | -1 | -5 |
3n | 3 | 7 | 1 | -3 |
n | 1 | -1 |
vậy....
bạn có thể giải thích ra được không !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
Cho phân số :M=6n-1/3n+2 (n là số nguyên)
a) Tìm n để M có giá trị là số nguyên
b) Tìm n để M có giá trị nhỏ nhất
để M là số nguyên thì 6n-1chia hết cho 3n+2
6n-1 chia hết cho 3n+2
mà 3n+ 2 luôn chia hết cho 3n+2 suy ra 2.(3n+2) cũng chia hết cho 3n+2
suy ra (6n-1)-2. (3n+2) chia hết cho 3n+2
6n-1 - 6n-4 chia hết cho 3n+2
-5 chia hết cho 3n+2
3n+2 thuộc Ước của -5 thuộc (1,5,-1,-5)
3n thuộc (-1,3,-3,-8)
n thuộc (-1/3,1,-1,-8/3)
mà n là số nguyên nên n thuộc (1 và -1)
để M có gt nhỏ nhất thì n = -1
câu a mình nghĩ mình đúng nhưng câu b thì mk chưa chắc. Xin lỗi nhìu nhoa
Cho phân số M =6n-1/3n+2.
a,Tìm n để M có giá trị nguyên.
b, Tìm n để M có giá trị nhỏ nhất.
để m có giá trị nguyên thì
6n-1/3n+2
6n-1-6n-4/3n+2
-5/3n+2
3n+2c[1;5;-1;-5]
3n{-1;3;-3;-7}
nếu 3n=-1\(\Rightarrow\)không tìm được n thỏa mãn
nếu..................n=1
nếu..................n=-1
nếu..................không tìm được n thỏa mãn
Cho phân số M = 6n - 1 / 3n+2 (n thuộc Z)
a, tìm số nguyên n để M có giá trị nguyên
b, tìm số nguyên n để M có giÁ TRỊ NHỎ NHẤT .
AI NHANH NHẤT, RÕ RÀNG MK TICK CHO.
Cho phân số M = 6n - 1 / 3n+2 (n thuộc Z)
a, tìm số nguyên n để M có giá trị nguyên
b, tìm số nguyên n để M có giÁ TRỊ NHỎ NHẤT .
AI NHANH NHẤT MÀ GIẢI RÕ RÀNG NHẤT THÌ MK TICK CHO.
a) Để \(\frac{6n-1}{3n+2}=\frac{6n+4-5}{3n+2}=2-\frac{5}{3n+2}\)là số nguyên .
=> \(\frac{5}{3n+2}\)là 1 số nguyên
=> 5 chia hết cho 3n+2 .
=> 3n+2 thuộc Ư(5)=\(\left\{\pm1;\pm5\right\}\)
Từ đó, ta lập bảng ( khúc này bn tự làm)
Vậy...
b) Để \(\frac{5}{3n+2}\)đạt giá trị lớn nhất:
=> 3n+2 đạt giá trị tự nhiên nhỏ nhất
=> 3n đạt giá trị tự nhiên nhỏ nhất
=> n là số tự nhiên nhỏ nhấ
<=> n = 0
Cho phân số M=\(\frac{6n-1}{3n+2}\) n thuộc Z
a,Tìm số nguyên n để M có giá trị nguyên
b,tìm số tự nhiên n để M có giá trị nhỏ nhất.
M=(6n+4-5):(3n+2)=2-5:(3n+2)
a) để M nguyên thì (3n+2) phải là ước của 5
=> 3n+2={-5; -1; 1; 5}
+/ 3n+2=-5 => n=-7/3 (loại)
+/ 3n+2=-1 => n=-1; M=7
+/ 3n+2=1 => n=-1/3 loại
+/ 3n+2=5 => n=1; M=-3
Đs: n={-1; 1}
b) để M đạt nhỏ nhất thì 5:(3n+2) là lớn nhất, hay 3n+2 đạt giá trị nhỏ nhất => n=0
Mmin=2-5/2=-1/2
cho phân số:M=6n-1/3n-2
a)Tìm n để phân số M là số nguyên (n thuộc Z)
b)Tìm n để M có giá trị nhỏ nhất (n thuộc Z)
Cho phân số : A = 6n-1/3n+2
a. Tìm n là số nguyên để A có giá trị nguyên
b.Tìm là số nguyên để A có giá trị nhỏ nhất
a) A = 6n+9-13 / 2n+3 = 3 - 13/2n+3
để A rút gọn được thì 13 phải chia hết cho 2n+3
Ư(13) thuộc Z là -13,-1,1,13
<=> n có thể là -8,-2,-1,5
câu a ko bít đúng ko, vì cái từ "rút gọn được" hơi khó hỉu, ko biết bạn muốn rút thành phân số tối giản hay theo cách của mình là rút thành số nguyên. Mình giải tiếp câu b đây, câu này dễ, cho mìnk 4,5 * nká
b) để A nhỏ nhất, A phải là số âm
=> 6n-4 là số âm, 2n+3 là số dương (TH1)
hoặc 6n-4 là số dương, 2n+3 là số âm (TH2)
*TH1:
6n -4 < 0 <=> 6n < 4 <=> n < 4/6
2n+3 > 0 <=> 2n > -3 <=> n > -3/2
mà n thuộc Z
=> n= 0 hoặc n=-1
*TH2:
6n -4 > 0 <=> 6n > 4 <=> n > 4/6
2n+3 < 0 <=> 2n < -3 <=> n < -3/2
=> mâu thuẫn
vậy ta xét tiếp A nhỏ nhất khi n = 0 hoặc n = -1.
<Tới đây thì bạn tự giải nha>
tớ giải được A nhỏ nhất (A=-10) khi n = -1
Cho phân số 6n-1/3n+2 (n E Z)
a)Tìm n để A có giá trị nguyên
b)Tìm n để A có giá trị nhỏ nhất
a) \(A=\frac{6n-1}{3n+2}=\frac{6n+4-5}{3n+2}=2-\frac{5}{3n+2}\inℤ\)mà \(n\inℤ\)nên \(3n+2\inƯ\left(5\right)=\left\{-5,-1,1,5\right\}\)
mà \(n\inℤ\)suy ra \(n\in\left\{-1,1\right\}\).
b) \(A=2-\frac{5}{3n+2}\)có giá trị nhỏ nhất suy ra \(\frac{5}{3n+2}\)có giá trị lớn nhất suy ra \(3n+2\)có giá trị dương nhỏ nhất mà \(n\inℤ\)nên \(3n+2\)dương nhỏ nhất bằng \(2\)tại \(n=0\).
\(minA=2-\frac{5}{2}=-0,5\).