CMR: Nếu a ko là bội của 7 thì a6- 1 chia hết cho 7
CMR NẾU a KHÔNG PHẢI BỘI CỦA 7 THÌ a6 -1 CHIA HẾT CHO 7
khẳng định đúng hay sai
câu 1:nếu mỗi số hạng của tổng ko chia hết cho 3 thì tổng ko chia hết cho 3
2; nếu hiệu của 2 số chia hết cho 7 và một trong 2 số ấy chia hết cho 7 thì số còn lại cũng chia hết cho 7
3:mọi số tự nhiên là bội của 13 đều là hợp số
4;có 3 số tự nhiên lẻ liên tiếp đều là số nguyên tố
5: mọi số nguyên nhỏ hơn 1 đều là s nguyên âm
6: giá trị tuyệt đối của một số nguyên dương là số đối của nó
7: nếu AM+MB=AB thì M là trung điểm của đoạn thẳng AB
8: nếu M là trung điểm của đoạn thẳng AB thì M cách đều 2 điểm A va B
bạn nào trả lời nhanh và đúng nhất sẽ đc 4 tick mình nói thật
1 . CMR nếu [a,2014]=1 thì a4-1 chia hết cho 240
2. một số có 6n chữ số chia hết cho 7 . CMR nếu chuyển chữ số tận cùng của số đó lên đầu thì được 1 số chia hết cho 7
CMR
a)A=1+2+2^2+2^3+...+2^39 là bội của 15
b)T=125^7 - 25^9 là bội của 124
c)M=7+7^2+7^3+...+7^2000 chia hết cho 8
c)P=a+a^2+a^3+...a^2n chia hết cho a-1 với a,n thuộc
bài 1
Cho biết 3a + 2b chia hết cho 17 ( a, b thuộc N) .Chứng minh rằng 10a+b chia hết cho 17
bài 2
Cho biết a-5b chia hết cho 17 (a, b thuộc N).Chứng minh rằng 10a+b chia hết cho 17
bài 3
a, CMR : nếu a3x+5y chia hết cho 7 thì x + 4y chia hết cho 7 ( x,y thuộc N ). Điều ngược lại có đúng ko?
b, CMR : nếu 2x+3y chia hết cho 17 thì 9x + 5y chia hết cho 17 ( x,y thuộc N ) . Điều ngược lại có đúng ko?
bài 1
Cho biết 3a + 2b chia hết cho 17 ( a, b thuộc N) .Chứng minh rằng 10a+b chia hết cho 17
bài 2
Cho biết a-5b chia hết cho 17 (a, b thuộc N).Chứng minh rằng 10a+b chia hết cho 17
bài 3
a, CMR : nếu a3x+5y chia hết cho 7 thì x + 4y chia hết cho 7 ( x,y thuộc N ). Điều ngược lại có đúng ko?
b, CMR : nếu 2x+3y chia hết cho 17 thì 9x + 5y chia hết cho 17 ( x,y thuộc N ) . Điều ngược lại có đúng ko?
1 giải
Ta có 17 chia hết cho 17
suy ra 17a+3a+b chia hết cho 17
suy ra 20a+2b chia hết cho 17
rút gọn cho 2
suy ra 10a+b chia hét cho 17
2 giải
* nếu a-5b chia hết cho 17 thì 10a + b chia hết cho 17
vì a-5b chia hết cho 17 nên 10(a-5b) chia hết cho 17 => 10a-50b chia hết cho 17 => 10a-50b+51b chia hết cho 17 hay 10a + b chia hết cho 17 (1) *
nếu 10a + b chia hết cho 17 thì a-5b chia hết cho 17
vì 10a+b chia hết cho 17 nên 10a + b - 51b chia hết cho 17 => 10a - 50b chia hết cho 17 => 10(a-5) chia hết cho 17 mà (10;17)=1 nên a-5b chia hết cho 17 (2)
Từ (1) và (2) suy ra điều phải chứng minh
3 bó tay
Câu trả lời hay nhất: + ta chứng minh a,b,c có ít nhất một số chia hết cho 3
giả sử cả 3 số trên đều không chia hết cho 3
=> a^2 = 1 (mod3) và b^2 = 1 (mod3) (bình phương 1 số chia hết cho 3 hoạc chia 3 dư 1)
=> a^2 + b^2 = 2 (mod3) nhưng c^2 = 1 (mod3) => mâu thuẫn
Vậy có ít nhất 1 số chia hết cho 3
+ tương tự,có ít nhất 1 số chia hết cho 4,vì giả sử cả 3 số a,b,c đều không chia hết cho 4
=> a^2 = 1 (mod4) và b^2 = 1 (mod4) => a^2 + b^2 = 2 (mod 4) nhưng c^2 = 1 (mod 4) => mâu thuẫn
vậy có ít nhất 1 số cgia hết cho 4
+ tương tự a^2 = 1 (mod 5) hoạc a^2 = -1 (mod 5) hoạc a^2 = 4 (mod 5)
và -1 + 1 = 0,1 + 4 = 5,-1 + 4 = 3
=> phải có ít nhất 1 số chia hết cho 5
Vậy abc chia hết cho BCNN(3,4,5) = 60 hay abc chia hết 60
Chứng minh rằng : Nếu a không là bội số của 7 thì a6 - 1 chia hết cho 7.
Các bạn hãy giải hộ minh nhé mình đang cần gấp!
https://cunghoctot.vn/Forum/Topic/1002821
bạn cứ vào táp này là có lời giải
Ta có nếu a không là bội của 7 thì a không chia hết cho 7 với mọi a là số nguyên lớn hơn 0
Mà a không chia hết cho 7 tức là a chia cho 7 dư 1, 2, 3, 4, 5 hoặc 6
Vì vậy a^6 chia cho 7 sẽ dư 1^6, 2^6, 3^6, 4^6, 5^6 hoặc 6^6
Vậy nếu 1^6 - 1, 2^6 - 1, 3^6 - 1, 4^6 - 1, 5^6 - 1, 6^6 - 1 chia hết cho 7 thì a^6 - 1 chia hết cho 7
Thật vậy :
- 1^6 - 1 = 1 - 1 = 0 chia hết cho 7
- 2^6 - 1 = 64 - 1 = 63 chia hết cho 7
- 3^6 - 1 = 729 - 1 = 728 chia hết cho 7
- 4^6 - 1 = 4096 - 1 = 4095 chia hết cho 7
- 5^6 - 1 = 15625 - 1 = 15624 chia hết cho 7
- 6^6 - 1 = 46656 - 1 = 46655 chia hết cho 7
Vậy a^6 - 1 chia hết cho 7 với mọi x thuộc số nguyên lớn hơn 0 không chia hết cho 7
cho ab là số nguyên cmr nếu a-2b chia hết cho 7 thì a-9b chia hết cho 7, điều ngược lại có đúng không
\(a-2b⋮7;7b⋮7\Rightarrow a-2b-7b=a-9b⋮7\)
\(a-9b⋮7;7b⋮7\Rightarrow a-9b+7b=a-2b⋮7\)
Mình có một bài toán CMR a^7 - a chia hết cho 7 không biết giải nên lên hỏi bác google thì nó giải như này:
a^7 - a = a(a^6 - 1) = a(a^2 - 1)(a^2 + a + 1)(a^2 - a + 1)
Nếu a = 7k (k thuộc Z) thì a chia hết cho 7
Nếu a = 7k + 1 (k thuộc Z) thì a^2 - 1 = 49k^2 + 14k chia hết cho 7
Nếu a = 7k + 2 (k thuộc Z) thì a2^ + a + 1 = 49k^2 + 35k + 7 chia hết cho 7
Nếu a = 7k + 3 (k thuộc Z) thì a^2 - a + 1 = 49k^2 + 35k + 7 chia hết cho 7
Trong trường hợp nào củng có một thừa số chia hết cho 7
Vậy: a^7 - a chia hết cho 7
Mình không hiểu vài chỗ:
- Nếu a = 7k nghĩa là sao?
- Nếu a = 7k + 1 (k thuộc Z) thì a^2 - 1 = 49k^2 + 14k chia hết cho 7. Cái khúc "thì a^2 - 1 = 49k^2 + 14k chia hết cho 7" là gì?
- Tương tự, Nếu a = 7k + 3 (k thuộc Z) thì a^2 - a + 1 = 49k^2 + 35k + 7 chia hết cho 7. Cái khúc "thì a^2 - a + 1 = 49k^2 + 35k + 7 chia hết cho 7" là sao?
- a^7 - a sao lại phân tích thành a(a^2 - 1)(a^2 + a + 1)(a^2 - a + 1) được?
- Phân tích thành a(a^2 - 1)(a^2 + a + 1)(a^2 - a + 1) để làm gì?
Nhờ các bạn giải thích hộ mình. Mình cảm ơn trước.