CMR: phương trình sau vô nghiệm: \(x^6+x^5+x^4+x^3+x^2+x+1=0\)
chứng minh phương trình vô nghiệm x^6 + x^5 + x^4 + x^3 + x^2 + x +1 = 0
Với x khác 1 nhân cả hai vế với (x-1) khác 0
\(\left(x-1\right)\left(x^6+x^5+..+1\right)=x^7-1=0\)
\(x^7=1\)
với x>1 hiển nhiên VT>1 => vô nghiệm
với 0<=x<1 hiển nhiên VT<1
Với x<0 do số mũ =7 lẻ => VT<0<1
Kết luận: PT x^7-1=0 có nghiệm duy nhất x=1 => (......) khác 0 với mọi x
chứng minh phương trình x^6+x^5+x^4+x^3+x^2+x+1=0 vô nghiệm
minh hc lop 6 nen khong biet lam toan lop 8
ptr <=> x^6 - x^5 + (1/4)x^4 + (3/4)x^4 - x³ + (1/3)x² + (2/3)x² - x + 3/8 + 3/8 = 0
<=> x^4.(x² - x + 1/4) + (3x²/4).(x² - 4x/3 + 4/9) + (2/3)(x² - 3x/2 + 9/16) + 3/8 = 0
<=> x^4.(x - 1/2)² + (3x²/4).(x - 2/3)² + (2/3)(x - 3/4)² + 3/8 = 0
ptrình vô nghiệm vì VT > 0 với mọi x (thậm chí VT > 3/8 với mọi x)
CMR
Các phương trình sau vô nghiệm
\(x^4-x^3+2x^2-x+1=0\)
Ta có:\(x^4-x^3+2x^2-x+1=0\)
\(\Leftrightarrow x^4-x^3+x^2+x^2-x+1=0\)
\(\Leftrightarrow\left(x^4-x^3+x^2\right)+\left(x^2-x+1\right)=0\)
\(\Leftrightarrow x^2\left(x^2-x+1\right)+\left(x^2-x+1\right)=0\)
\(\Leftrightarrow\left(x^2-x+1\right)\left(x^2+1\right)=0\)
Vì \(x^2-x+1=\left(x^2-x+\frac{1}{4}\right)+\frac{3}{4}=\left(x-\frac{1}{2}\right)^2+\frac{3}{4}\ge\frac{3}{4}\)
và\(x^2+1\ge1\)
nên \(\left(x^2-x+1\right)\left(x^2+1\right)\ge\frac{3}{4}\)
Vậy Pt trên vô nghiệm
\(x^4-x^3+2x^2-x+1=0\)
\(\Leftrightarrow x^4+x^2-x^3-x+x^2+1=0\)
\(\Leftrightarrow\left(x^4+x^2\right)-\left(x^3+x\right)+\left(x^2+1\right)=0\)
\(\Leftrightarrow x^2\left(x^2+1\right)-x\left(x^2+1\right)+\left(x^2+1\right)=0\)
\(\Leftrightarrow\left(x^2+1\right)\left(x^2-x+1\right)=0\)
\(\Rightarrow x^2+1=0\)( do \(x^2-x+1\)là bình phương thiếu nên không thể bằng 0)
\(\Leftrightarrow x^2=-1\)( vô lý )
Do đó : Phương trình đã cho vô nghiệm
CMR: các PT sau vô nghiệm
a) x^4 -2x^3 +4x^2 -3x +2 = 0
b) x^6 + x^5 + x^4 + x^3 +x^2 + x + 1=0
a) \(x^4-2x^3+4x^2-3x+2=0\)
\(\Leftrightarrow x^4-2x^3+x^2+3x^2-3x+2=0\)
\(\Leftrightarrow\left(x^4-2x^3+x^2\right)+3\left(x^2-x+\frac{1}{4}\right)+\frac{5}{4}=0\)
\(\Leftrightarrow\left(x^2-x\right)^2=3\left(x-\frac{1}{2}\right)^2+\frac{5}{4}=0\)
Vì (x2 -x )2 \(\ge0\)với mọi x
\(\Rightarrow\left(x^2-x\right)^2+3\left(x-\frac{1}{2}\right)^2+\frac{5}{4}>0\)với mọi x
=> Phương trình trên vô nghiệm - đpcm
b) Ta có
x6+x5+x4+x3+x2+x+1=0
Nhận thấy x = 1 không là nghiệm của phương trình. Nhân cả hai vế của phương trình với x-1 được :
(x−1)(x6+x5+x4+x3+x2+x+1)=0
⇔x7−1=0
⇔x7=1
⇔x=1
(vô lí)
Điều vô lí chứng tỏ phương trình vô nghiệm.
Chứng minh các phương trình sau vô nghiệm:
a) (x-2)3=(x-2).(x2+2x+4)-6.(x-1)2
b)4x2-12x+10=0
Chứng minh các phương trình sau vô số nghiệm:
(x+1).(x2-x-1)=(x+1)3-3x.(x+1)
\(\text{CM vô nghiệm}\)
\(\text{a) }\left(x-2\right)^3=\left(x-2\right).\left(x^2+2x+4\right)-6\left(x-1\right)^2\)
\(\Leftrightarrow x^3-6x^2+12x-8=x^3-8-6\left(x^2-2x+1\right)\)
\(\Leftrightarrow x^3-6x^2+12x-8=x^3-8-6x^2+12x-6\)
\(\Leftrightarrow x^3-6x^2+12x-x^3+6x-12x=-8+8-6\)
\(\Leftrightarrow0x=-6\text{ (vô lí)}\)
\(\text{Vậy }S=\varnothing\)
\(\text{b) }4x^2-12x+10=0\)
\(\Leftrightarrow\left(4x^2-12x+9\right)+1=0\)
\(\Leftrightarrow\left(2x-3\right)^2+1=0\)
\(\Leftrightarrow\left(2x-3\right)^2=-1\text{ (vô lí)}\)
\(\text{Vậy }S=\varnothing\)
\(\text{CM vô số nghiệm}\)
\(\left(x+1\right)\left(x^2-x+1\right)=\left(x+1\right)^3-3x\left(x+1\right)\)
\(\Leftrightarrow\left(x+1\right)\left(x^2-x+1\right)=\left(x+1\right)\left[\left(x+1\right)^2-3x\right]\)
\(\Leftrightarrow\left(x+1\right)\left(x^2-x+1\right)=\left(x+1\right)\left(x^2+2x+1-3x\right)\)
\(\Leftrightarrow\left(x+1\right)\left(x^2-x+1\right)=\left(x+1\right)\left(x^2-x+1\right)\text{ (luôn luôn đúng)}\)
\(\text{Vậy }S\inℝ\)
cho P(x)=x^3+ax^2+bx+c; Q(x)=x^2+x+2013. Biết phương trình P(x)=0 có 3 nghiệm phân biệt, còn phương trình P(Q(x))=0 vô nghiệm. CMR: P(2013)>1/64
+) Ta có: P(x) = 0 có 3 nghiệm phân biệt
=> Gọi 3 nghiệm đó là m; n ; p.
=> P(x) = ( x - m ) ( x - p ) (x - n)
=> P(Q(x)) = ( x^2 + x + 2013 -m )( x^2 + x + 2013 -n )( x^2 + x + 2013 - p )
Vì P(Q(x)) =0 vô nghiệm nên: x^2 + x + 2013 - m = 0 ;x^2 + x + 2013 - m = 0; x^2 + x + 2013 - m = 0 đều vô nghiệm
=> \(\Delta_m=1^2-4\left(2013-m\right)< 0;\Delta_n=1^2-4\left(2013-n\right)< 0;\Delta_p=1^2-4\left(2013-p\right)< 0\)
=> \(2013-m>\frac{1}{4};2013-n>\frac{1}{4};2013-p>\frac{1}{4}\)
=> P(2013) = ( 2013 - m) (2013 -n ) (2013 - p) >\(\frac{1}{4}.\frac{1}{4}.\frac{1}{4}=\frac{1}{64}\)
1) Phương trình 3x-5x+5= -8 có nghiệm là?
2) Giá trị của b để phương trình 3x+b=0 có nghiệm x=-2 là?
3) Phương trình 2x+k=x-1 nhận x=2 là nghiệm khi k=?
4) Phương trình m(x-1)=5-(m-1)x vô nghiệm nếu?
5) Phương trình \(x^2\)-4x+3= 0 có nghiệm là?
6) Phương trình (2x-3)(3x+2)=6x(x-50)+44 có nghiệm là?
7) Tập nghiệm của phương trình \(\frac{5x+4}{10}+\frac{2x+5}{6}+\frac{x-7}{15}-\frac{x+1}{30}\)là?
8) Ngiệm của phương trình\(\frac{5x-3}{6}-x+1=1-\frac{x+1}{3}\)là?
9) Nghiệm của phương trình -8(1,3-2x)=4(5x+1) là?
10) Nghiệm của phương trình \(\frac{8x+5}{4}-\frac{3x+1}{2}=\frac{2x+1}{2}+\frac{x+4}{4}\)là?
11) Nghiệm của phương trình \(\frac{2\left(x+6\right)}{3}+\frac{x+13}{2}-\frac{5\left(x-1\right)}{6}+\frac{x+1}{3}+11\)là?
Help me:(((
Ai làm đc câu nào thì làm giúp mình với ạ, cảm ơn trc:(((
\(1,3x-5x+5=-8\)
\(\Leftrightarrow-2x+5+8=0\)
\(\Leftrightarrow-2x=-13\)
\(\Leftrightarrow x=\frac{13}{2}\)
Giải phương trình:
1) (3x-1)^2-5(2x+1)^2+96x-3)(2x+1)=(x-1)^2
2) (x+2)^3-(x-2)^3=12(x-1)-8
3) x-1/4-5-2x/9=3x-2/3
4) 25x-655/95-5(x-12)/209=[89-3x-2(x-13)/5]/11
5) 29-x/21+27-x/23+25-x/25+23-x/27=-4
6) x-69/30+x-67/32=x-63/36+x-61/38
7)x+117/19+x+4/28+x+3/57=0
8) 59-x/41+57-x/43+2=x-55?45+x-53/47-2
9) Cho phương trình: mx+x-m^2=2x-2 (x là ẩn). Tìm m để phương trình:
a) Có nghiệm duy nhất
b) Vô số nghiệm
c) Vô nghiệm
Chứng minh rằng các phương trình sau vô nghiệm:
a/ \(x^4-3x^2+6x+13=0\)
b/ \(x^6+x^5+x^4+x^3+x^2+x+1=0\)