Biết \(\frac{a+b-c}{c}=\frac{b+c-a}{a}=\frac{a+c-b}{b}\)
Tính \(\left(1+\frac{b}{a}\right)\cdot\left(1+\frac{a}{c}\right)\cdot\left(1+\frac{c}{b}\right)\)
Tính \(y=\frac{a\cdot b}{\left(b-c\right)\cdot\left(c-a\right)}+\frac{b\cdot c}{\left(c-a\right)\cdot\left(a-b\right)}+\frac{a\cdot c}{\left(a-b\right)\cdot\left(b-c\right)}\)
bai nay de dong len roi khu la ra
dap an y=-1
cho a, b, c là 3 số thực khác 0, thỏa mãn
\(\frac{a+b-2017\cdot c}{c}=\frac{b+c-2017\cdot a}{a}=\frac{c+a-2017\cdot b}{b}\)
tính giá trị của biểu thức
B=\(\left(1+\frac{b}{a}\right)\cdot\left(1+\frac{a}{c}\right)\cdot\left(1+\frac{c}{a}\right)\)
Cho a,b,c khác nhau.C/m
\(\frac{b-c}{\left(a-b\right)\cdot\left(a-c\right)}+\frac{c-a}{\left(b-c\right)\cdot\left(b-a\right)}+\frac{a-b}{\left(c-a\right)\cdot\left(c-b\right)}=\frac{2}{a-b}+\frac{2}{b-c}+\frac{2}{c-a}\)
Câu hỏi của Tăng Thiện Đạt - Toán lớp 8 - Học toán với OnlineMath
Cho số 4,b,c khác 0 thỏa mãn \(\frac{a+b}{c}=\frac{b+c}{a}=\frac{a+c}{b}\)
Tính P\(\left(1+\frac{a}{b}\right)\cdot\left(1+\frac{b}{c}\right)\cdot\left(1+\frac{c}{a}\right)\)
\(\frac{a+b}{c}=\frac{b+c}{a}=\frac{a+c}{b}\)
<=> \(\frac{a+b}{c}+1=\frac{b+c}{a}+1=\frac{a+c}{b}+1\)
<=> \(\frac{a+b+c}{c}=\frac{a+b+c}{a}=\frac{a+b+c}{b}\)
<=> a + b + c = 0 hoặc a = b = c.
Th1: a + b + c = 0
=> a + b = - c ; a + c = -b ; b + c = -a.
Thế vào P :
\(P=\left(1+\frac{a}{b}\right)\cdot\left(1+\frac{b}{c}\right)\cdot\left(1+\frac{c}{a}\right)\)
\(=\left(\frac{a+b}{b}\right)\cdot\left(\frac{b+c}{c}\right)\cdot\left(\frac{c+a}{a}\right)\)
\(=-\frac{c}{b}.\frac{\left(-a\right)}{c}.\frac{\left(-b\right)}{a}=-1\)
TH2: a = b = c. THế vào P
\(P=\left(1+1\right).\left(1+1\right).\left(1+1\right)=8\)
Vậy: P = -1 nếu a + b + c = 0
hoặc P = 8 nếu a = b = c.
\(P=\left(1+\frac{a}{b}\right)\left(1+\frac{b}{c}\right)\left(1+\frac{c}{a}\right)=\frac{a+b}{b}.\frac{b+c}{c}.\frac{c+a}{a}\)
Ta có: \(\frac{a+b}{c}=\frac{b+c}{a}=\frac{a+c}{b}\)\(\Rightarrow\frac{a+b}{c}+1=\frac{b+c}{a}+1=\frac{a+c}{b}+1=\frac{a+b+c}{c}=\frac{a+b+c}{a}=\frac{a+b+c}{b}\)
TH1: Nếu \(a+b+c=0\)\(\Rightarrow\hept{\begin{cases}a+b=-c\\b+c=-a\\c+a=-b\end{cases}}\)
\(\Rightarrow P=\frac{-c}{b}.\frac{-a}{c}.\frac{-b}{a}=\frac{\left(-a\right).\left(-b\right).\left(-c\right)}{abc}=-1\)
TH2: Nếu \(a+b+c\ne0\)\(\Rightarrow a=b=c\)
\(\Rightarrow\hept{\begin{cases}a+b=2b\\b+c=2c\\c+a=2a\end{cases}}\)\(\Rightarrow P=\frac{2b}{b}.\frac{2c}{c}.\frac{2a}{a}=2.2.2=8\)
Vậy \(P=-1\)hoặc \(P=8\)
Cho a,b,c,d thoả mãn:
\(\frac{a+b+c}{d}=\frac{b+c+d}{a}=\frac{a+c+d}{b}=\frac{d+a+b}{c}\)
Tìm: \(B=\left(1+\frac{a+b}{c+d}\right)\cdot\left(1+\frac{b+c}{d+d}\right)\cdot\left(1+\frac{c+d}{a+b}\right)\cdot\left(1+\frac{d+a}{b+c}\right)\)
Cho a,b,c đôi một khác nhau
Tính P=\(\frac{a^2}{\left(a-b\right)\cdot\left(a-c\right)}+\frac{b^2}{\left(b-c\right)\cdot\left(b-a\right)}+\frac{c^2}{\left(c-b\right)\cdot\left(c-a\right)}\)
\(\left(1+\frac{b^2+c^2-a^2}{2bc}\right)\cdot\frac{1+\frac{a}{b+c}}{1-\frac{a}{b+c}}\cdot\frac{b^2+c^2-\left(b-c\right)^2}{a+b+c}\)
\(\left(1+\frac{b^2+c^2-a^2}{2bc}\right).\frac{1+\frac{a}{b+c}}{1-\frac{a}{b+c}}.\frac{b^2+c^2-\left(b-c\right)^2}{a+b+c}\)
= \(\left(1+\frac{\left(b+c\right)^2-2bc-a^2}{2bc}\right).\frac{\frac{a+b+c}{b+c}}{\frac{b+c-a}{b+c}}.\frac{\left(b+c\right)^2-2bc-\left(b-c\right)^2}{a+b+c}\)
= \(\left(1+\frac{\left(b+c-a\right)\left(b+c+a\right)-2bc}{2bc}\right).\frac{a+b+c}{b+c-a}.\frac{\left(b+c-b+c\right)\left(b+c+b-c\right)-2bc}{a+b+c}\)
= \(\left(1+\frac{\left(b+c-a\right)\left(b+c+a\right)}{2bc}-1\right).\frac{a+b+c}{b+c-a}.\frac{4bc-2bc}{a+b+c}\)
= \(\frac{\left(b+c-a\right)\left(b+c+a\right)}{2bc}.\frac{2bc}{b+c-a}\)
= \(\frac{\left(b+c-a\right)\left(b+c+a\right)}{b+c-a}\)
= \(b+c+a\)
a>0;b>0;c>0
\(\frac{a+b}{c}=\frac{b+c}{a}=\frac{a+c}{b}=2\)
Tính \(M=\left(1+\frac{a}{b}\right)\cdot\left(1+\frac{b}{c}\right)\cdot\left(1+\frac{c}{a}\right)\)
\(\frac{a+b}{c}=\frac{b+c}{a}=\frac{a+c}{b}=2\)
\(\Leftrightarrow a+b=2c=b+c=2a=a+c=2b\Rightarrow a=b=c\)
\(M=\left(1+\frac{a}{b}\right).\left(1+\frac{b}{c}\right).\left(1+\frac{c}{a}\right)=2^3=8\)
cho các số a,b,c đôi một hác nhau và khác 0, thoả mãn \(\frac{a+b}{c}=\frac{b+c}{a}=\frac{c+a}{b}\)
tính giá trị biểu thức M=\(\left(1+\frac{a}{b}\right)\cdot\left(1+\frac{b}{c}\right)\cdot\left(1+\frac{c}{a}\right)\)
Câu hỏi của Chu Hoàng THủy Tiên - Toán lớp 7 - Học toán với OnlineMath