2 .( x - 1 ) - 60 = 40
Cho A = abba . Chứng tỏ rằng A là số tự nhiên luôn chia hết cho 11
Cho abba. Chứng tỏ rằng a là một số tự nhiên luôn chia hết cho 11. Nhớ trình bày mình sẽ tick cho.
abba=a*1001+b*110
=a*11*91+b*11*10
=11*(a*91+b*10)
Vì 11*(a*91+b*10) chia hết cho 11 nên abba chia hết cho 11
Cho A=abba chứng tỏ rằng A là số tự nhiên luôn chia hết cho11.
A=1000a+100b+10b+1a
A=1001a+101b
1001a:11
110b:11
vậy A luôn chia hết cho 11
Ta có : abba = 1000a + 100b + 10b + 1a
= 1001a + 101b
Vì 1001 \(⋮\) 11 => 1001a \(⋮\) 11 và 101 \(⋮\)11 => 101b \(⋮\) 11 => 1001a + 101b \(⋮\) 11 => abba \(⋮\) 11
Vậy A \(⋮\) 11 ( đpcm )
Ta có :abba là bội của 11 => abba chia hết cho 11.
Thật vậy : ( a + b ) - ( b + a ) = ( a + b ) - ( a +b ) = 0
0 chia hết cho 11 nên abba chia hết cho 11.
Vậy....
Bài 1: Cho A= abba. Chứng tỏ rằng A là số tự nhiên luôn chia hết cho 11
Bài 2: Cho một số tự nhiên có hai chữ số, nếu đổi chỗ hai chữ số, ta được số mới. Chứng minh hiệu hai số đó là bội của 9
Bài 3: Cho M= 4^10+4^11+4^12+...+4^198+4^199
Chứng minh rằng M là bội của 5
Bài 1: abba = aca . 11 => abba luôn chia hết cho 11
Bài 2: ab - ba = 10a + b - 10b + a = 9a - 9b = 9(a-b) => chúng là bội của 9
Bài 3:
410 + 411 +412 + 413 + ... + 4198 + 4199
= (40 + 41) . 411 + (40 + 41) . 413 + ... + (40 + 41) . 4199
= (4 + 1) . 411 + (4 + 1) . 413 + ... + (4 + 1) . 4199
= 5 . 411 + 5 . 413 + ... + 5 . 4199
= 5 . (411 + 413 + ... + 4199) => M chia hết cho 5
Vậy M là bội của 5
1. Chứng minh rằng :
a) A = aaa chia hết cho 101
b) B = abba + 11^2011 chia hết cho 11
2. Chứng minh rằng :
a) Tích 2 số tự nhiên liên tiếp luôn có 1 số chia hết cho 2
b) Tích 3 số tự nhiên liên tiếp luôn có 1 số chia hết cho 6
Cho A=abba.Chứng tỏ rằng A là mọi STN luôn chia hết cho 11
abba = 1000a + 100b + 10b + a
= 1001a + 110b
Vì 110 và 1001 chia hết cho 11. => 110b và 1001a chia hết cho 11.
=> (1001a + 110b) chia hết cho 11
Vậy abba chia hết cho 11
Ta có A=abba
\(\Rightarrow\)A=1000a+100b+10c+1a
A=1001a+101b
mà 1001\(⋮\)11 và 101\(⋮\)11
\(\Rightarrow\)Với mọi stn ta luôn có A\(⋮\)11
1. Tìm số tự nhiên x, biết:
a) ( x + 16 ) chia hết cho ( x + 1 )
b) ( 4x + 20 ) chia hết cho ( 2x + 1 )
2. Chứng tỏ abba chia hết cho 11.
1. Tìm số tự nhiên x, biết:
a) ( x + 16 ) chia hết cho ( x + 1 ):
( x + 1 + 15 ) chia hết cho ( x + 1 )
( x + 1 ) chia hết cho ( x + 1 ); 15 chia hết cho ( x + 1 ).
Vậy ( x + 1 ) thuộc Ư (15) với ( x + 1 ) phải lớn hơn hoặc bằng 1.
Ư (15) = { 1; 3; 5; 15 }.
x + 1 có thể bằng 1; 3; 5 hoặc 15.
Nếu:
x + 1 = 1 => x = 0
x + 1 = 3 => x = 2
x + 1 = 5 => x = 4
x + 1 = 15 => x = 14
Kết luận: Nếu x = 0; 2; 4; 14 thì ( x + 16 ) chia hết cho ( x + 1 )
b) ( 4x + 20 ) chia hết cho ( 2x + 1 )
[ 2. ( 2x + 1 ) + 18 ] chia hết cho ( 2x + 1 )
2. ( 2x + 1 ) chia hết cho ( 2x + 1 ); 18 chia hết cho ( 2x + 1 ). Vì x thuộc N nên 2x + 1 sẽ lớn hơn hoặc bằng 1 và 2x + 1 là số lẻ.
Vậy ( 2x + 1 ) thuộc Ư (18)
Ư (18) = { 1; 2; 3; 6; 9; 18 }.
Vậy 2x + 1 có thể bằng 1; 3; 9 ( như yêu cầu đã nêu ở trên ).
2x + 1 = 1 => 2x = 0 => x = 0
2x + 1 = 3 => 2x = 2 => x = 1
2x + 1 = 9 => 2x = 8 => x = 4
Kết luận: Nếu x = 0; 1; 4 thì ( 4x + 20 ) chia hết cho ( 2x + 1 )
2. Chứng tỏ abba chia hết cho 11.
Ta có: abba = 1000a + 100b + 10b + a
= ( 1000a + a ) + ( 100b + 10b )
= 1001a + 110 b = 11. 91. a + 11. 10 .b
= 11. ( 91. a + 10. b )
Vì 11 chia hết cho 11, ( 91. a + 10. b ) thuộc N nên 11. ( 91. a + 10. b ) chia hết cho 11.
Vậy abba chia hết cho 11.
Mình làm có đúng không? Nếu sai sửa giúp mình nhé!
Câu 1: chứng tỏ rằng
a) trong 2 số tự nhiên liên tiếp , có 1 số chia hết cho 2
b) trong số tự nhiên liên tiếp, có 1 số chia hết cho 3
Câu 2 * Chứng tỏ rằng
a) Tổng của 3 số tự nhiên liên tiếp là 1 số chia hết cho 3
b) Tổng của bốn số tự nhiên liên tiếp là 1 số ko chia hết cho 4
Câu 3*: Chứng tỏ rằng số có dạng aaaaaa bao giờ cũng chia hết cho 7 (chẳng hạn : 333 333 chia hết cho 7 )
Câu 4* : Chứng tỏ rằng lấy 1 số có 2 chữ số,cộng vs số gồm 2 chữ số ấy viết theo thứ tự ngược lại, ta luôn luôn đc 1 số chia hết cho 11 ( chẳng hạn : 37+73= 110 chia hết cho 11)
BẠN NÀO GIẢI RA ĐẦU TIÊN MK SẼ TICK " Nhớ là phải trình bày thì mk mới tick "
Chứng tò rằng số tự nhiên có dạng abba luôn chia hết cho 11
Theo bài ra ta có:
abba = ax1000+bx100+bx10+a
=(ax1000+a)+(bx100+bx10)
=ax(1000+1)+bx(100+10)
=ax1001+bx111
Vì 1001 chia hết cho 11=>ax1001 chia hết cho 11(1)
Vì 111 chia hết cho 11=>bx111 chia hết cho 11(2)
Từ 1 và 2=>abba luôn chia hết cho 11
cho a =(x+2009) .(x+2010) .Chứng minh rằng :a chia hết cho 2 ,với x là số tự nhiên
2 . Chứng tỏ rằng (ab) ̅ +(ba) ̅chia hết cho 11 với ab và ba là 2 số tự nhiên
a= (x+2009)(x+2010)
Vì x là stn chia hết cho 2
---> x+2009 là stn lẻ, còn x+2010 là stn chẵn.
Mà LẺ × CHẴN = CHẴN --> (x+2009)(x+2010) chia hết cho 2.
(ab) + (ba) với ab và ba là 2stn
( Mình ko ghi dấu gạch trên đầu vì nó rách việc quá mà mình sẽ ghi A và B nên mong bạn thông cảm)
Ta có:(AB) + (BA) = (10A+B) + (10B+A)
= (10A+A) + (10B+B)
= 11A + 11B
Chúng chia hết cho 11 --->(AB) +(BA) chia hết cho 11