1. Cho n thuộc N, CMR n2+n+1 ko chia hết cho 4 và ko chia hết cho 5.
cho n thuộc n
CMR n^2+n+1 ko chia hết cho 4 và n^2+n+1 ko chia hết cho 5
Sử dụng phương pháp phản chứng
Giả sử n chia hết cho 5
=>n có dạng 5k
=>\(\text{n}^2+\text{n}+1=25k^2+5k+1=5k\left(5k+1\right)+1\)
ta có 5k(5k+1) chia hết cho 5 mà 1 ko chia hết cho 5
=>25k^2+5k+1 ko chia hết cho 5
(đpcm)
\(\text{n^2+n+1 = n(n+1) +1 }\)
vì n(n+1) luôn là số chẵn suy ra n(n+1)+1 luôn lẻ --> ko chia hết cho 4
cho n thuộc N,CMR: n^2+n+1,ko chia hết cho 4 và ko chia hết cho 5
n 2+n+1 = n﴾n + 1﴿ +1
. Vì n﴾n+1﴿ là tích của hai số tự nhiên liên tiếp nên có chữ số tận cùng là 0, 2, 6
Do đó n﴾n+1﴿ + 1 có chữ số tận cùng là 1, 3, 7.
Vì 1, 3, 7 không chia hết cho 2 và 5 nên n﴾n+1﴿ + 1 không chia hết cho 4 và 5
Vậy n 2+n+1 không chia hết cho 4 và 5.
CMR:
a)abc chia hết cho 21 (=) a - 2b + 4c chia hết cho 21
b)Ngoại n thuộc N thì 60n + 45 chia hết cho 15 nhưng ko chia hết cho 30
c)Ko có số tự nhiên nào chia cho 15 thì dư 6 và chia 9 dư 1
d)(1005n + 2100b) chia hết cho 15 (a,b thuộc N)
e)A= n2 + n + 1 ko chia hét cho 2 và 5.Ngoại n thuộc N
f)Ngoại n thuộc N tích (n + 3) . (n + 6) chia hết cho 2
g)H = 2 + 22 + 23 +.....+ 260 chia hết cho 3,7,15
h)E = 1 + 3 + 32 + 33 + .......+ 31991 chia hết cho 13 và 41
1. CMR
a, 1+11+11^2+.....+11^9 chia hết cho 10
b, Số gồm 27 chữ số 1 chia het cho 27
2.CMR
a, 5^n-1 chia hết cho 4(n thuộc N)
b, n^2+n+1 ko chia hết cho 5(n thuộc N)
cho n thuộc N. CMR n2 + n + 1 ko chia hết cho 4 và 5
cho n thuộc N , chứng tỏ n2 + n +1 ko chia hết cho 4 và ko chia hết cho 5.
bạn bấm vào dòng chữ xanh này nhé
Giúp tôi giải toán - Hỏi đáp, thảo luận về toán học - Học toán với OnlineMath
cho n thuộc N chứng mink rằng n2+n+1 ko chia hết cho 4 và ko chia hết cho 5
+) n^2 + n + 1 = n(n + 1) + 1
Vì n(n + 1) là tích 2 số tự nhiên liên tiếp => n(n + 1) chia hết cho 2 => n(n + 1) + 1 không chia hết cho 2 => n(n + 1) + 1 không chia hết cho 4
hay n^2 + n + 1 không chia hết cho 4
+) Tích 2 số tự nhiên liên tiếp có CSTC là 0; 2; 6
=> n(n + 1) có CSTC là 0; 2; 6
=> n(n + 1) + 1 có CSTC là 1; 3; 7
hay n^2 + n + 1 có CSTC là 1; 3; 7
=> n^2 + n + 1 không chia hết cho 5
n là số lẻ và n ko chia hết cho 5 CMR n4 -1 chia hết cho 40
P.s cái đề b/s thêm n nguyên
Xét \(n\left(n^4-1\right)=n\left(n-1\right)\left(n+1\right)\left(n^2+1\right)=n\left(n-1\right)\left(n+1\right)\left(n^2-4+5\right).\)
\(=\left(n-2\right)\left(n-1\right)n\left(n+1\right)\left(n+2\right)+5\left(n-1\right)n\left(n+1\right)\)
Do (n-2)(n-1)n(n+1)(n+2) là tích của 5 số nguyên liên tiếp => chia hết cho 40
Lại có n lẻ => (n-1)(n+1) là tích của 2 số chẵn liên tiếp nên chia hết cho 8
=>5(n-1)n(n+1) chia hết cho 40
\(\Rightarrow n\left(n^4-1\right)⋮40\Leftrightarrow n^4-1⋮40\)(Vì n lẻ, n không chia hết cho 5)
DO N KHÔNG CHIA HẾT CHO 5 MÀ SỐ CHÍNH PHƯƠNG CHIA 5 DƯ 0 , 1 , 4
=> n^2 CHIA 5 DƯ 1 HOẶC 4
=> n^4 CHIA 5 DƯ 1 => n^4 - 1 chia hết cho 5
DO N LÀ SỐ LẺ MÀ SỐ CHÍNH PHƯƠNG CHIA 8 DƯ 0,1 HOẶC 4
=> n^2 chia 5 dư 1 hoặc 4
=> n^4 chia 8 dư 1
=> n^4 chia hết cho 8
Mà 5 và 8 nguyên tố cùng nhau
=> n^4 - 1 chia hết cho 40
CMR , với n thuộc N , ta có :
a) 5^n - 1 chia het cho 4
b) n^2 + n + 2 ko chia hết cho 5