tính giá trị
a=1/15 +1/35+1/63+1/99
Tính giá trị biểu thức:
A= \(\frac{1}{3}+\frac{1}{15}+\frac{1}{35}+\frac{1}{63}+\frac{1}{99}\)
Ta có: \(A=\frac{1}{3}+\frac{1}{15}+\frac{1}{35}+\frac{1}{63}+\frac{1}{99}\)
\(\Leftrightarrow A=\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+\frac{1}{7.9}+\frac{1}{9.11}\)
\(\Rightarrow2A=\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+\frac{2}{7.9}+\frac{2}{9.11}\)
\(\Rightarrow2A=1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+\frac{1}{9}-\frac{1}{11}\)
\(\Rightarrow2A=1-\frac{1}{11}=\frac{10}{11}\)
\(\Rightarrow A=\frac{10}{11}:2=\frac{5}{11}\)
Vậy \(A=\frac{5}{11}\)
A = \(\frac{1}{3}+\frac{1}{15}+\frac{1}{35}+\frac{1}{63}+\frac{1}{99}\)
A = \(\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+\frac{1}{7.9}+\frac{1}{9.11}\)
A = \(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+\frac{1}{9}-\frac{1}{11}\)
A = \(1-\frac{1}{11}\)
A = \(\frac{10}{11}\)
A = \(\frac{1}{3}+\frac{1}{15}+\frac{1}{35}+\frac{1}{63}+\frac{1}{99}\)
\(A=\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+\frac{1}{7.9}+\frac{1}{9.11}\)
A = \(\frac{1}{2}.\left(\frac{1}{1}-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+...+\frac{1}{9}-\frac{1}{11}\right)\)
A = \(\frac{1}{2}.\left(1-\frac{1}{11}\right)\)
A = \(\frac{1}{2}.\frac{10}{11}=\frac{1}{11}\)
Tính: 1/15+1/35+1/63+1/99+.......+1/9999=?
a)Ta có:
A= 1/15+1/35+1/63+1/99+1/143
A= 1/3.5+1/5.7+1/7.9+1/9.11+1/11.13
2A= 2/3.5+2/5.7+2/7.9+2/9.11+2/11.13
2A= 1/3-1/5+1/5-1/7+1/7-1/9+1/9-1/11+1/11-1/13
Đơn giản đi ta được:
2A= 1/3-1/13
2A= 10/39
A= 5/39
Vậy A= 5/39
tính nhanh giá trị biểu thức a biết : A =1+3/15+3/35+3/63+3/99+3/143
Tính A= 1/15+ 1/35 + 1/63 +1/99 +...+ 1/9999
\(A=\frac{1}{3.5}+\frac{1}{5.7}+\frac{1}{7.9}+...+\frac{1}{99.101}\)
\(A=\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+....+\frac{1}{99}-\frac{1}{101}\)
\(A=\frac{1}{3}-\frac{1}{101}\)
\(A=\frac{98}{303}\)
A = \(\frac{1}{15}+\frac{1}{35}+\frac{1}{63}+\frac{1}{99}+...+\frac{1}{9999}\)\(=\frac{1}{3.5}+\frac{1}{5.7}+\frac{1}{7.9}+\frac{1}{9.11}+...+\frac{1}{99.101}\)
= \(\left(\frac{2}{3.5}+\frac{2}{5.7}+\frac{2}{7.9}+\frac{2}{9.11}+...+\frac{2}{99.101}\right):2\)\(=\left(\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{99}-\frac{1}{101}\right):2\)
= \(\left(\frac{1}{3}-\frac{1}{101}\right):2=\frac{101-3}{303}:2=\frac{98}{303}:2=\frac{49}{303}\)
Dấu chấm trong bài là dấu nhân nha !
Đặt \(A=\frac{1}{15}+\frac{1}{35}+\frac{1}{63}+..+\frac{1}{9999}\)
\(A=\frac{1}{3.5}+\frac{1}{5.7}+\frac{1}{7.9}+...+\frac{1}{99.101}\)
\(2A=\frac{2}{3.5}+\frac{2}{5.7}+\frac{2}{7.9}+...+\frac{2}{99.101}\)
\(2A=\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+...+\frac{1}{99}-\frac{1}{101}\)
\(2A=\frac{1}{3}-\frac{1}{101}\)
\(A=\frac{98}{303}:2\)
\(A=\frac{49}{303}\)
Ủng hộ mk nha !!! ^_^
Tính: 1/15 + 1/35 +1/63 +1/99 + 1/143
Gọi dãy là A ta có :
A = 1/3.5 + 1/5.7 + 1/7.9 + 1/9.11 + 1/11.13
A = 1/2 . ( 2/3.5 + 2/5.7 + 2/7.9 + 2/9.11 + 2/11.13 )
A = 1/2 . ( 1/3 - 1/5 + 1/5 - 1/7 + 1/7 - 1/9 + 1/9 - 1/11 + 1/11 - 1/13 )
A = 1/2 . ( 1/3 - 1/13 )
A = 1/2 . 10/39
A = 5/39
\(\frac{1}{15}+\frac{1}{35}+\frac{1}{63}+\frac{1}{99}+\frac{1}{143}\)
=\(\frac{1}{2}\left(\frac{2}{3.5}+\frac{2}{5.7}+\frac{2}{7.9}+\frac{2}{9.11}+\frac{2}{11.13}\right)\)
=\(\frac{1}{2}\left(\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+\frac{1}{9}-\frac{1}{11}+\frac{1}{11}-\frac{1}{13}\right)\)
=\(\frac{1}{2}\left(\frac{1}{3}-\frac{1}{13}\right)\)
=\(\frac{1}{2}.\frac{10}{39}\)
=\(\frac{5}{39}\)
Tính: 1/15 + 1/35 +1/63 +1/99 + 1/143
1/15+1/35+1/63+1/99+1/143
=1/2x(1/15+1/35+1/63+1/99+1/143)
=1/2x(2/3x5+2/5x7+2/7x9+2/9x11+2/11x13)
=1/2x(1/3-1/5+1/7-1/9+1/9-1/11+1/11-1/13)
=1/2x(1/3-1/13)
=1/2x10/39
=5/39
Tính nhanh:A=1/15+1/35+1/63+1/99+...+1/9999
A = 1/15 + 1/35 + 1/63 + 1/99 +........1/9999
A = 1/3x5 + 1/5x7 + 1/7x9 + .......+ 1/99x101
A = 1/2 x (1/3 - 1/5 + 1/5 - 1/7 + 1/7 - 1/9 +..... + 1/99 - 1/101)
A = 1/2 X ( 1/3 - 1/99)
A = 1/2 x ( 1/3 - 1/101)
A = 1/2 ( 98/303)
A = 49/303
Tính A= 1/15 + 1/35 + 1/63+ 1/99 + ... + 1/999
1/3x5 +1/5x7+1/7x9 +1/9x11+...+1/99x101
1/3-1/5+1/5-1/7+...+1/99-1/101
1/3-1/101
98/303
\(A=\frac{1}{15}+\frac{1}{35}+\frac{1}{63}+\frac{1}{99}+...+\frac{1}{999}\)
\(A=\frac{1}{3.5}+\frac{1}{5.7}+\frac{1}{7.9}+\frac{1}{9.11}+...+\frac{1}{111.9}\)
\(\Rightarrow2A=2.\left(\frac{1}{3.5}+\frac{1}{5.7}+\frac{1}{7.9}+\frac{1}{9.11}+...+\frac{1}{111.9}\right)\)
\(=\frac{2}{3.5}+\frac{2}{5.7}+\frac{2}{7.9}+\frac{2}{9.11}+...+\frac{1}{111.9}\)
= \(\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+\frac{1}{9}-\frac{1}{11}+...+\frac{1}{111}-\frac{1}{9}\)
\(=\frac{1}{3}-\frac{1}{9}\)
\(=\frac{2}{9}\)
Tính nhanh : A = 1/15+1/35+1/63+1/99+.....+1/9999