Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Nguyễn  Chí Hào
Xem chi tiết
Trần Thanh Phương
28 tháng 10 2018 lúc 14:26

Số chính phương luôn có tận cùng bằng : 0; 1; 4; 5; 6; 9

+) tận cùng bằng 0 => chia hết

+) tận cùng bằng 1 => dư 1

+) tận cùng bằng 4 => dư 4

+) tận cùng bằng 5 => chia hết

+) tận cùng bằng 6 => dư 1

+) tận cùng bằng 9 => dư 4

Vậy khi một số chính phương chia cho 5 có thể chia hết hoặc dư 1 hoặc dư 4

bùi thị bích ngọc
Xem chi tiết
bùi thị bích ngọc
12 tháng 7 2015 lúc 17:10

giúp mik với đang gấp nà

Thắng  Hoàng
5 tháng 11 2017 lúc 21:36

r=10 nha

truongducthanh
Xem chi tiết
Nhược Dược Tiểu Ánh
Xem chi tiết
h123456
17 tháng 11 2016 lúc 20:38

11;12;13;14

Hai Kieu
Xem chi tiết
Bao
Xem chi tiết
Anh Kiet Tram
18 tháng 7 2015 lúc 21:35

Bài 1:

Do một số chia cho 3 có số dư là 0, 1, 2 nên đặt các số là 3x, 3x+1 và 3x+2.

Ta có: (3x)2 = 9x2 chia hết cho 3

           (3x + 1)2 = 9x2 + 6x +1 chia 3 dư 1

           (3x + 2)2 = 9x2 + 12x + 4 chia 3 dư 1

Vậy một số chính phương chia cho 3 hoặc chia hết hoặc dư 1.

Bài 2 : Tương tự

 

Nhâm Thị Ngọc Mai
8 tháng 12 2016 lúc 21:31

Bài 1:

Với số tự nhiên a bất kì ta có: a chia hết cho 3, chia 3 dư 1 hoặc chia 3 dư 2. 
- Nếu a chia hết cho 3 => a = 3k (k là số tự nhiên) 
=> a^2 = (3k)^2 = 9k^2 chia hết cho 3 hay chia 3 dư 0 
- Nếu a chia 3 dư 1 => a = 3k +1 => a^2 = (3k+1)^2 = 9k^2 + 6k +1 ; số này chia 3 dư 1 
- Nếu a chia 3 dư 2 => a = 3k+2 => a^2 = (3k+2)^2 = 9k^2 + 12k + 4; số này chia 3 dư 1. 
Vậy số chính phương chia cho 3 dư 0 hoặc 1 
* Với số chính phương chia 4 dư 0 hoặc 1 bạn làm tương tự nhé. 

Trangpk
Xem chi tiết
zZz Cool Kid_new zZz
19 tháng 2 2019 lúc 15:48

Cái này thì dễ thôi bạn.Mình làm mẫu khi chia cho 7 còn bạn làm 9 nốt hộ mình nha!

Một số khi chia cho 7 có các số dư là:0;1;2;3;4;5;6

\(\Rightarrow\) Số đó có dạng \(7k+1;7k+2;7k+3;7k+4;7k+5;7k+6\) với \(k\in N\)

Nếu số đó có dạng \(7k+1\) thì khi đó:

\(\left(7k+1\right)^2=\left(7k+1\right)\left(7k+1\right)=49k^2+7k+7k+1\) (nhân tung ra)

\(=49k^2+14k+1\) chia 7 dư 1.(1)

Nếu số đó có dạng \(7k+2\) thì khi đó:

\(\left(7k+2\right)^2=\left(7k+2\right)\left(7k+2\right)=49k^2+14k+14k+4\)

\(=49k^2+28k+4\) chia 7 dư 4.(2)

Nếu số đó có dạng \(7k+3\) thì khi đó:

\(\left(7k+3\right)^2=\left(7k+3\right)\left(7k+3\right)=49k^2+21k+21k+9\)

\(=49k^2+42k+9\) chia 7 dư 2.(3)

Nếu số đó có dạng  \(7k+4\)thì khi đó:

\(\left(7k+4\right)^2=\left(7k+4\right)\left(7k+4\right)=49k^2+28k+28k+16\)

\(=49k^2+56k+16\) chia 7 dư 2.(3)

Nếu số đó có dạng \(7k+5\) thì khi đó:

\(\left(7k+5\right)^2=\left(7k+5\right)\left(7k+5\right)=49k^2+35k+35k+25\)

\(=49k^2+70k+25\) chia 7 dư 3.(4)

Nếu số đó có dạng \(7k+6\) thì khi đó:

\(\left(7k+6\right)^2=\left(7k+6\right)\left(7k+6\right)=49k^2+42k+42k+36\)

\(=49k^2+84k+36\) chia 7 dư 1.(5)

Nếu số đó có dạng \(7k\) thì khi đó:

\(\left(7k\right)^2=49k^2\) chia 7 dư 0.(6)

Từ \(\left(1\right);\left(2\right);\left(3\right);\left(4\right);\left(5\right);\left(6\right)\) suy ra có các số dư là:\(0;1;2;3;4\)

Linh
Xem chi tiết
nguyen trong hieu
31 tháng 1 2016 lúc 14:36

vì số dư là số chính phương và số chia = 6 nên => số dư = 4

=> số A là : 25 x 6 +4 = 154

KL: A= 154

Khánh Linh Phạm
Xem chi tiết