Cho 2a+13b/3a-7b=2c+13d/3c-7d. Chứng minh răngd a/b=c/d
2a+13b/3a-7b=2c+13d/3c-7d chứng minh rằng a/b=c/d
Bài làm :
Cách 1 :Ta có :
\(\frac{2a+13b}{3a-7b}=\frac{2c+13d}{3a-7d}\)
\(\Rightarrow\frac{2a+13b}{2c+13d}=\frac{3a-7b}{3c-7d}\)
Áp dụng tính chất của dãy tỉ số bằng nhau ; ta có :
\(\frac{2a+13b}{2c+13d}=\frac{3a-7b}{3c-7d}=\frac{2a+13b+3a-7b}{2c+13d+3c-7d}=\frac{5a+6b}{5c+6d}\Rightarrow\frac{5a}{5c}=\frac{6b}{6d}\)
\(\Rightarrow\frac{a}{b}=\frac{c}{d}\)
=> Điều phải chứng minh
Cách 2 :\(\text{Giả sử : }\frac{a}{b}=\frac{c}{d}=k\Rightarrow\hept{\begin{cases}a=bk\\c=dk\end{cases}}\)
Ta có :
\(\frac{2a+13b}{3a-7b}=\frac{2bk+13b}{3bk-7b}=\frac{b\left(2k+13\right)}{b\left(3k-7\right)}=\frac{2k+13}{3k-7}\left(1\right)\)\(\frac{2c+13d}{3c-7d}=\frac{2dk+13d}{3dk-7d}=\frac{d\left(2k+13\right)}{d\left(3k-7\right)}=\frac{2k+13}{3k-7}\left(2\right)\)Từ (1) và (2)
\(\Rightarrow\frac{2a+13b}{3a-7b}=\frac{2c+13d}{3c-7d}\)
=> Điều phải chứng minh
Cho tỉ lệ thuận: 2a trừ 13b phần 3a trừ 7b bằng 2c + 13d phần 3c trừ 7d. CM rằng a phần b bằng c phần d và ngược lại: cho a phần b bằng c phần d suy ra 2a trừ 13b phần 3a + 7b bằng 2c+ 13b phần 3c trừ 7d
Cho a/b = c/d. CMR : 2a+13b/3a-7b = 2c+13d/ 3c-7d
Cho a/b = c/d. CMR : 2a+13b/3a-7b = 2c+13d/ 3c-7d
Cho a/b = c/d. CMR : 2a+13b/3a-7b = 2c+13d/ 3c-7d
Cho a/b = c/d. CMR : 2a+13b/3a-7b = 2c+13d/ 3c-7d
Cho tỉ lệ thức (2a+13b)/(3a-7b)=(2c+13d)/(3c-7d). Cmr: a/b=c/d.
Ta có thể chứng minh :
Ta có:
2a+13/b3a−7b=2c+13d/3c−7d
=> 2a+13b/2c+13d=3a−7b/3c−7d
Áp dụng tính chất của dãy tỉ số bằng nhau ta có :
2a+13b/2c+13d=3a−7b/3c−7d=2a+13b+3a−7b/2c+13d+3c−7d=5a+6b5c+6d
Từ 5a+6b/5c+6d = > 5a/5c=6b/6d
<=> a/c=b/d
Hay: a/b=c/d (đpcm)
Cho tỉ lệ thức 2a+13b/ 3a-7b = 2c+13d / 3c-7d . CMR a/b=c/d
Ta co : \(\frac{2a+13b}{3a-7c}=\frac{2c+13d}{3a-7d}\)
\(\Rightarrow\frac{2a+13b}{2c+13d}=\frac{3a-7b}{3c-7d}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có :
\(\frac{2a+13b}{2c+13d}=\frac{3a-7b}{3c-7d}=\frac{2a+13b+3a-7b}{2c+13d+3c-7d}=\frac{5a+6b}{5c+6d}\)
Suy ra : \(\frac{5a+6b}{5c+6d}\Rightarrow\frac{5a}{5c}=\frac{6b}{6d}\)
\(\Rightarrow\frac{a}{c}=\frac{b}{d}\)
Vay : \(\frac{a}{b}=\frac{c}{d}\left(dpcm\right)\)
\(\frac{2a+13b}{3a-7b}=\frac{2c+13d}{3c-7d}\)=>(2a+13b)(3c-7d)=(3a-7b)(2c+13d)
=>6ac-14ad+39bc-91bd=6ac+39ad-14bc-91bd
=>-14ad+39bc=-14bc+39ad
=>-14ad+14bc=39ad-39bc
=>-14(ad-bc)=39(ad-bc)
@-@ sao lại tek này xem lại nhá
2a+13b3a−7b=2c+13d3c−7d→2a+13b2c+13d=3a−7b3c−7d2a+13b3a−7b=2c+13d3c−7d→2a+13b2c+13d=3a−7b3c−7d
• 2a+13b2c+13d=3a−7b3c−7d=6a+39b6c+39d=6a−14b6c−14d=53b53d=bd2a+13b2c+13d=3a−7b3c−7d=6a+39b6c+39d=6a−14b6c−14d=53b53d=bd (1)
• 2a+13b2c+13d=3a−7b3c−7d=14a+91b14c+91d=39a−91b39c−91d=53a53c=ac2a+13b2c+13d=3a−7b3c−7d=14a+91b14c+91d=39a−91b39c−91d=53a53c=ac (2)
Từ (1) và (2) suy ra ac=bd(=2a+13b2c+13d)→ab=cd
(2a+13b)/(3a-7b)=(2c+13d)/(3c-7d) cm a/b=c/d
\(\frac{2a+13b}{3a-7b}=\frac{2c+13d}{3c-7d}\)
\(\Rightarrow\frac{2a+13b}{2c+13d}=\frac{3a-7b}{3c-7d}=\frac{3\left(2a+13b\right)}{3\left(2c+13d\right)}=\frac{2\left(3a-7b\right)}{2\left(3c-7d\right)}\)
\(=\frac{3\left(2a+13b\right)-2\left(3a-7b\right)}{3\left(2c+13d\right)-2\left(3c-7d\right)}=\frac{53b}{53d}=\frac{b}{d}\)(1)
\(\Rightarrow\frac{2a+13b}{2c+13d}=\frac{3a-7b}{3c-7d}=\frac{7\left(2a+13b\right)}{7\left(2a+13d\right)}=\frac{13\left(3a-7b\right)}{13\left(3c-7d\right)}\)
\(=\frac{7\left(2a+13b\right)+13\left(3a-7b\right)}{7\left(2c+13d\right)+13\left(3c-7d\right)}=\frac{53a}{53c}=\frac{a}{c}\)(2)
Từ (1) (2) => \(\frac{b}{d}=\frac{a}{c}\Rightarrow\frac{c}{d}=\frac{a}{b}\)
\(\frac{2a+13b}{3a-7b}=\frac{2c+13d}{3c-7d}\Leftrightarrow\left(2a+13b\right).\left(3c-7d\right)=\left(2c+13d\right).\left(3a-7b\right)\)
\(\Rightarrow6ac-14ad+39bc-91bd=6ac-14cb+39ad-91bd\)
\(\Rightarrow-14ad+39bc=-14cb+39ad\)
\(\Rightarrow-53ad=-53bc\Rightarrow ad=bc\Rightarrow\frac{a}{b}=\frac{c}{d}\left(đpcm\right)\)
Ta có \(\frac{2a+13b}{3a-7b}=\frac{2c+13d}{3c-7d}\)
=> (2a+13b).(3c-7d)=(3a-7b).(2c+13d)
(=) 6ac-14ad+39bc-91bd=6ac+39ad-14bc-91bd
(=) -14ad+39bc=39ad-14bc
(=) -14ad-39ad=-39bc-14bc
(=) -53ad=-53bc
(=) ad=bc
=> \(\frac{a}{b}=\frac{c}{d}\)