Tìm x \(\frac{-9}{|x-18|}=\frac{5}{-6}\)
Tìm x,y,z
\(\frac{6}{11}x=\frac{9}{2}y=\frac{18}{5}z\) và -x + y + z = -120
\(\frac{6x}{11}=\frac{9y}{2}=\frac{18z}{5}\Leftrightarrow\frac{-6x}{-11}=\frac{9y}{2}=\frac{18z}{5}\Rightarrow\frac{-x}{\frac{-11}{6}}=\frac{y}{\frac{2}{9}}=\frac{z}{\frac{5}{18}}\)
\(\Rightarrow\frac{-x+y+z}{\frac{-11}{6}+\frac{2}{9}+\frac{5}{18}}=\frac{-120}{\frac{-4}{3}}=90\)
\(-x=90\times\frac{-11}{6}=-165\Rightarrow x=165\)
\(y=90\times\frac{2}{9}=20\)
\(z=90\times\frac{5}{18}=25\)
\(\frac{6}{11}x=\frac{9}{2}y=\frac{18}{5}z\Rightarrow\frac{6x}{11.18}=\frac{9y}{2.18}=\frac{18z}{5.18}\)
\(\Rightarrow\frac{-x}{-33}=\frac{y}{4}=\frac{z}{5}=\frac{-x+y+z}{-33+4+5}=\frac{-120}{-24}=5\)
\(\Rightarrow x=165;y=20;z=25\)
Tìm x,y,z biết \(\frac{6}{11}x=\frac{9}{2}y=\frac{18}{5}z\) và -x+y+z=-120
\(\frac{6}{11}x=\frac{9}{2}y=\frac{18}{5}z\Rightarrow\frac{6x}{11.18}=\frac{9y}{2.18}=\frac{18z}{5.18}\)
\(\Rightarrow\frac{-x}{-33}=\frac{y}{4}=\frac{z}{5}=\frac{-x+y+z}{-33+4+5}=\frac{-120}{-24}=5\)
=>x=165,y=20,z=25
\(\frac{6}{11}x=\frac{9}{2}y=\frac{18}{5}z\Rightarrow\frac{6x}{11.18}=\frac{9y}{2.18}=\frac{18z}{5.18}\)
\(\Rightarrow\frac{-x}{-33}=\frac{y}{4}=\frac{z}{5}=\frac{-x+y+z}{-33+4+5}=\frac{-120}{-24}=5\)
\(\Rightarrow x=165;y=20;z=25\)
\(\frac{6}{11}x=\frac{9}{2}y=\frac{18}{5}z\Rightarrow\frac{6x}{11.18}=\frac{9y}{2.18}=\frac{18z}{5.18}\)
\(\Rightarrow\frac{-x}{-33}=\frac{y}{4}=\frac{z}{5}=\frac{-x+y+z}{-33+4+5}=\frac{-120}{-24}=5\)
\(\Rightarrow x=165;y=20;z=25\)
tìm x
a) \(x-\left[\frac{13}{18}x-\frac{24}{108}\right]=\left(\frac{-2}{3}\right)^2\)
b) \(3-7\frac{7}{12}< x< -\frac{5}{9}:\left(\frac{5}{9}-\frac{1}{6}\right)\)
\(\Leftrightarrow\)\(x-\left(\frac{13x}{18}-\frac{4}{18}\right)=\frac{4}{9}\)
\(\Leftrightarrow\)\(\frac{18x}{18}-\frac{13x}{18}+\frac{4}{18}=\frac{4}{9}\)
\(\Leftrightarrow\)\(\frac{5x}{18}=\frac{4}{9}-\frac{4}{18}\)
\(\Leftrightarrow\)\(\frac{5x}{18}=\frac{2}{9}\)
\(\Leftrightarrow\)\(5x=\frac{18.2}{9}\)
\(\Leftrightarrow\)\(5x=4\)
\(\Leftrightarrow\)\(x=\frac{4}{5}\)
Tìm x , biết
a) \(\frac{x}{12}=\frac{y}{9}=\frac{z}{5};x.y.z=20\)
b)\(\frac{6}{11}x=\frac{9}{2}y=\frac{18}{5}z;-x+y+z=-120\)
ta co : \(\frac{x}{12}=\frac{y}{9}=\frac{z}{5}\) va x.y.z=20
Dat : \(\frac{x}{12}=\frac{y}{9}=\frac{z}{5}=k\)
x=12k3
y=9k3
z=5k3
x.y.z=540k3
20 = 540k3
k3 =27
k = +-3
Voi : \(k=3\Rightarrow x=36;y=27;z=15\)
Voi :\(k=-3\Rightarrow x=-36;y=-27;z=-15\)
a) Đặt \(\frac{x}{12}=\frac{y}{9}=\frac{z}{5}=k\)
=>x=12k;y=9k;z=5k
Thay x=12k;y=9k;z=5k vào biểu thức x.y.z=20 ta được
(12k)(9k)(5k)=20
12k.9k.5k=20
540.\(k^3\)=20
k\(^3\)=\(\frac{1}{27}\)
=>k=\(\frac{1}{3}\)
=>\(x=\frac{1}{3}.12=4\)
\(y=\frac{1}{3}.9=3\)
\(z=\frac{1}{3}.5=\frac{5}{3}\)
Vậy x=4;y=3;z=\(\frac{5}{3}\)
b)Ta có:
\(\frac{6}{11}x=\frac{9}{2}y=\frac{18}{2}z\)=>\(\frac{6x}{11}=\frac{9y}{2}=\frac{18z}{5}\)=>\(\frac{6x}{11.18}=\frac{9y}{2.18}=\frac{18z}{5.18}\)=>\(\frac{6x}{198}=\frac{9y}{36}=\frac{18z}{90}\)
=>\(\frac{x}{33}=\frac{y}{4}=\frac{z}{5}\)
Áp dụng tính chất của dãy tỉ số bằng nhau ta có:
\(\frac{x}{33}=\frac{y}{4}=\frac{z}{5}=\frac{-x+y+z}{-33+4+5}=\frac{-120}{-24}=5\)
=>\(\frac{x}{33}=5\)=>\(x=5.33=165\)
\(\frac{y}{4}=5\)=>\(y=5.4=20\)
\(\frac{z}{5}=5\)=>\(z=5.5=25\)
Vậy x=165;y=20;z=25
Tìm x,y,z
\(\frac{6}{11}x=\frac{9}{2}y=\frac{18}{5}z\) và -x + y + z = -120
\(\frac{6}{11}x=\frac{9}{2}y=\frac{18}{5}z\Rightarrow\frac{x}{\frac{11}{6}}=\frac{y}{\frac{2}{9}}=\frac{z}{\frac{5}{18}}\)
Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:
\(\frac{x}{\frac{11}{6}}=\frac{y}{\frac{2}{9}}=\frac{z}{\frac{5}{18}}=\frac{-x+y+z}{-\frac{11}{6}+\frac{2}{9}+\frac{5}{18}}=\frac{-120}{-\frac{4}{3}}=90\)
\(\frac{x}{\frac{11}{6}}=90\Rightarrow x=90\times\frac{11}{6}=165\)
\(\frac{y}{\frac{2}{9}}=90\Rightarrow y=90\times\frac{2}{9}=20\)
\(\frac{z}{\frac{5}{18}}=90\Rightarrow x=90\times\frac{5}{18}=25\)
Giải:
Ta có: \(\frac{6}{11}x=\frac{9}{2}y=\frac{18}{5}z\Rightarrow\frac{x}{\frac{11}{6}}=\frac{y}{\frac{2}{9}}=\frac{z}{\frac{5}{18}}\Rightarrow\frac{-x}{\frac{-11}{6}}=\frac{y}{\frac{2}{9}}=\frac{z}{\frac{5}{18}}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\frac{-x}{\frac{-11}{6}}=\frac{y}{\frac{2}{9}}=\frac{z}{\frac{5}{18}}=\frac{-x+y+z}{\frac{-11}{6}+\frac{2}{9}+\frac{5}{18}}=\frac{-120}{\frac{-4}{3}}=90\)
+) \(\frac{x}{\frac{11}{6}}=90\Rightarrow x=165\)
+) \(\frac{y}{\frac{2}{9}}=90\Rightarrow y=20\)
+) \(\frac{z}{\frac{5}{18}}=20\Rightarrow z=25\)
Vậy bộ số \(\left(x,y,z\right)\) là: \(\left(165,20,25\right)\)
Tự nhiên máy mk bị restart nên mk gửi trả lời hơi chậm nhé!
Tìm x, y , z biết :
\(\frac{6}{11}x=\frac{9}{2}y=\frac{18}{5}z\) và \(-x+z=-196\)
Tìm x;y;z biết rằng
\(\frac{6}{11}x=\frac{9}{2}y=\frac{18}{5}z\) và -x+y+z= 120
= 344 + 278 + 643 + 937 + 463 + 33
= 463 + 345 + 678 + 57 + 845
= 345 + 555 + 556
= 345
6x/11=9y/2=18z/5
=>-18x/-33=18y/4=18z/5
theo tính chất dãy các tỉ số = nhau, đẳng thức trên =
-18x+18y+18z/-33+4+5=18.(-x+y+z/-24)=18.(-5)=-90
=>x=-165;y=-20;z=-25
Tìm x,y,z biết :
a)\(\frac{6}{11}x=\frac{9}{2}y=\frac{18}{5}z\) và -x+y+z= -120
tìm x,y,z
\(\frac{6}{11}\cdot x=\frac{9}{2}\cdot y=\frac{18}{5}\cdot z\)và \(-x+y+z=-120\)
Ta có: \(\frac{6x}{11}=\frac{9y}{2}=\frac{18z}{5}\Leftrightarrow\frac{-18x}{-33}=\frac{18y}{4}=\frac{18z}{5}\)
Áp dụng t/c của dãy tỉ số bằng nhau ta có:
\(\frac{-18x}{-33}=\frac{18y}{4}=\frac{18z}{5}=\frac{18\left(-x+y+z\right)}{-33+4+5}=\frac{18\cdot\left(-120\right)}{-24}=90\)
Do đó:
\(\frac{-18x}{-33}=90\Leftrightarrow x=165\)
\(\frac{18y}{4}=90\Leftrightarrow y=20\)
\(\frac{18z}{5}=90\Leftrightarrow z=25\)