Cho p và p2 + 4 là số nguyên tố.CMR: p + 8 là hợp số.
Cho p> 3 và p , p + 4 là số nguyên tố.CMR : p + 8 là hợp số.
p nguyên ttố. p> 3 nên p có dạng 3k+1 hoặc 3k+2
nếu p=3k+2 thì p+4=3k+2+4=3k+6 chia hết cho 3 nên p+4 chia hết cho 3, trái với đề bài
vậy p=3k+1 do đó p+8=3k+9 chia hết cho 3 mà p+8 lớn hơn 3 nên p+8 là hợp số
Vậy cậu không chứng minh 3k + 1 là số nguyên tố và 3k + 1 + 4 là số nguyên tố
Cho p là số nguyên tố>3 và 5p+1 là số nguyên tố.CMR 7p+1 là hợp số
Ta có : p là số nguyên tố , p > 3
=> p có dạng 3k+1 ( k thuộc N )
hoặc 3k +2
Xét p = 3k+1 ta có : 5p+1 = 5( 3k+1 ) +1 = 15k +5 +1= 15k +6 chia hết cho 3 ( Loại)
Xét p = 3k+2 ta có : 5p+1 = 5(3k+2) +1= 15k +10+1 = 15k + 11
7p +1 = 7(3k+2) +1 = 21k +14+1 = 21k + 15 chia hết cho 3
=> 7p+1 là hợp số (Thỏa mãn )
Vậy với p là số nguyên tố lớn hơn 3 và 5p+1 là số nguyên tố thì 7p +1 là hợp số
Vì p là số nguyên tố > 3 nên có dạng 3k+1; 3k+2 (k\(\inℕ\))
Thay p=3k+1 vào 5p+1 ta có: 5(3k+1)+1=15k+6 là hợp số (loại)
Thay p=3k+2 vào 5p+2 ta có: 5(3k+2)+1=15k+11 là số nguyên tố (chọn)
Với p=3k+2 ta có: 7p+1=7(3k+2)+1=21k+15 là hợp số
=> đpcm
Cho p và 3p-1 là các số nguyên tố.CMR 8p+1 là hợp số
Đề bài thiếu trường hợp nhé bạn
Đây là lời giải cũ của mình:
Có 3 trường hợp của p:
- Trưởng hợp 1: \(p⋮3\)
Vì p là số nguyên tố \(\Rightarrow p=3\Rightarrow3p-1=3.3-1=8⋮2\)Khi đó 3p-1 không là số nguyên tố, trái với đề bài.
- Trường hợp 2: \(p\)chia 3 dư 1.
Coi \(p=3k+1\)
\(p=3k+1\Rightarrow8p+1=8\left(3k+1\right)+1=24k+8+1=24k+9\)
Dựa theo tính chất chia hết của 1 tổng, \(8p+1⋮3\)
Mà \(8p+1>3\Rightarrow8p+1\)là hợp số
- Trường hợp 3: \(p\)chia 3 dư 2
Lúc này cũng coi \(p=3k+2\)
Có thể suy ra được rằng \(p=3k+2\Rightarrow3p-1=3\left(3k+2\right)-1=9k+6-1=9k+5\)
Khi đó, lại chia tiếp ra 2 trường hợp nữa:
+ \(k\)chia 2 dư 1 \(\Rightarrow9k+5⋮2\)
Mà vì \(9k+5>2\)nên \(9k+5=3p-1\)sẽ là hợp số, trái với đề bài.
+ \(k⋮2\Rightarrow p=\left(3k+2\right)⋮2\)
Để có thể thỏa mãn với đề bài, p chỉ có thể bằng 2 với \(k=0\)
(Thực ra, khi làm đến đây, mình mới thấy cái thiếu của đề bài vì khi \(p=2\Rightarrow3p-1=3.2-1=5\Rightarrow8p+1=8.2+1=17\); cả ba số 2; 5; 17 ta có được vào lúc này đều là số nguyên tố. Mặc dù thiếu như vậy nhưng lời giải ban đầu của mình cũng rất đáng để tham khảo)
Mong bạn hãy sửa lại đề bài nhé
Chúc bạn học tốt!
Cho p là số nguyên tố lớn hơn 3, biết p+2 cũng là số nguyên tố.CMR p+6 là hợp số.
câu 2:
p là 1 số nguyên tố (p>3),
do p không chia hết cho 3 nên p có dạng 3k + 1 hoặc 3k + 2
nhưng do p +4 là số nguyên tố (3k+2+4=3k+6 \(⋮\)3) nên p không thể có dạng 3k + 2 vậy p có dạng 3k +1. Vậy p + 8 = 3k + 9 chia hết cho 3 nên nó là hợp số.
câu 3:
Nếu p= 2 => 8p - 1 = 16 - 1= 15 là hợp số (loại)
Nếu p = 3=> 8p - 1 =24 - 1 = 23 là số nguyên tố 8p + 1 = 25 là hợp số
Nếu p > 3 => p có dạng 3K+1 hoặc 3K+2
Nếu p = 3K + 2 =>p = 24K + 16 - 1 = 24K + 15 thỏa mãn 3 và là hợp số (thỏa mãn điều kiện)
=> p = 3K + 1 => 8p + 1 = 24K +8 + 1 = 24K + 9 thỏa mãn 3 , là hợp số
Giả sử p là 1 số nguyên tố > 3, do p không chia hết cho 3 nên p có dạng là
3k + 1 hoặc 3k + 2
ta có
p = 3k + 2 suy ra p + 4 = 3k + 2 + 4 = 3k + 6 = 3.(k+2)
vì 3 chia hết cho 3 nên 3.(k+2) chia hết cho 3 nên p +4 là hợp số (1)
nếu p = 3k +1 suy ra p + 8 = 3k+1+8 =3k+9 =3.(k+3)
vì 3 chia hết cho 3 nên 3.(k+3) chia hết cho 3 nên p +8 là hợp số (2)
từ (1) và (2) suy ra p và p+4 là SNT (p>3) thì p+8 là HS
Vậy .................
8p+1 là số nguyên tố.CMR:4p-1 là hợp số
Bài 1:Cho p và 8p-1 là các số nguyên tố.CMR:8p+1 là hợp số
Bài 2:CMR mọi số nguyên tố lớn hơn 2 đều có dạng 4k+1 hoặc 4k-1
Bài 3:1 số nguyên tố p chia cho 42 có số dư là r(r là hợp số).Tìm r???
Cho p là số nguyên tố lớn hơn 3 và p+2 cũng là số nguyên tố.CMR 2p+2 chia hết cho 12
ta có 2p+2=p(p+1) vì p là số nguyên tố , p>3 => p lẻ =>p=1 \(⋮\)2=>2(p+1)\(⋮\)4 (1)
nếu p chia 3 dư 1 => p+2 \(⋮\)3 (vì p là số nguyên tố , p>3)
=> p chia 3 dư 2 => p+1 \(⋮\)3=>2(p+1)\(⋮\)3 (2)
từ (1),(2) => 2(p+1) \(⋮\)12
hap 2p+2 \(⋮\)12
Để ý rằng \(p^2-4=\left(p-2\right)\left(p+2\right)\), hơn nữa \(p-2< p+2\) nên để \(p^2-4\) là số nguyên tố thì \(p-2=1\) và \(p+2\) là số nguyên tố \(\Leftrightarrow p=3\).
Thử lại, ta thấy rõ rằng \(3^2+4=13\) và \(3^2-4=5\) đều là các số nguyên tố. Vậy, \(p=3\)