Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
TRẦN MINH NGỌC
Xem chi tiết
đinh huế
11 tháng 4 2016 lúc 20:42

p nguyên ttố. p> 3 nên p có dạng 3k+1 hoặc 3k+2

nếu p=3k+2 thì p+4=3k+2+4=3k+6 chia hết cho 3 nên p+4 chia hết cho 3, trái với đề bài

vậy p=3k+1 do đó p+8=3k+9 chia hết cho 3 mà p+8 lớn hơn 3 nên p+8 là hợp số

TRẦN MINH NGỌC
11 tháng 4 2016 lúc 21:30

Vậy cậu không chứng minh 3k + 1 là số nguyên tố và 3k + 1 + 4 là số nguyên tố

Nguyễn Nguyệt Ánh
Xem chi tiết
 Thiên Nhi ♥.♥
2 tháng 8 2019 lúc 15:14

Ta có : p là số nguyên tố , p > 3

=> p có dạng 3k+1 ( k thuộc N )

​​             hoặc 3k +2 

Xét p = 3k+1 ta có : 5p+1 = 5( 3k+1 ) +1 = 15k +5 +1= 15k +6 chia hết cho 3 ( Loại)

Xét p = 3k+2 ta có : 5p+1 = 5(3k+2) +1= 15k +10+1 = 15k + 11

                                7p +1 = 7(3k+2) +1 = 21k +14+1 = 21k + 15 chia hết cho 3 

=> 7p+1 là hợp số (Thỏa mãn )

Vậy với p là số nguyên tố lớn hơn 3 và 5p+1 là số nguyên tố thì 7p +1 là hợp số 

Tran Le Khanh Linh
7 tháng 6 2020 lúc 8:02

Vì p là số nguyên tố > 3 nên có dạng 3k+1; 3k+2 (k\(\inℕ\))

Thay p=3k+1 vào 5p+1 ta có: 5(3k+1)+1=15k+6 là hợp số (loại)

Thay p=3k+2 vào 5p+2 ta có: 5(3k+2)+1=15k+11 là số nguyên tố (chọn)

Với p=3k+2 ta có: 7p+1=7(3k+2)+1=21k+15 là hợp số

=> đpcm

Khách vãng lai đã xóa
Hà Hoàng Quân
Xem chi tiết
Nguyễn Trung Kiên
2 tháng 10 2021 lúc 22:11

Đề bài thiếu trường hợp nhé bạn

Đây là lời giải cũ của mình:

Có 3 trường hợp của p:

- Trưởng hợp 1: \(p⋮3\)

Vì p là số nguyên tố \(\Rightarrow p=3\Rightarrow3p-1=3.3-1=8⋮2\)Khi đó 3p-1 không là số nguyên tố, trái với đề bài.

- Trường hợp 2: \(p\)chia 3 dư 1.

Coi \(p=3k+1\)

\(p=3k+1\Rightarrow8p+1=8\left(3k+1\right)+1=24k+8+1=24k+9\)

Dựa theo tính chất chia hết của 1 tổng, \(8p+1⋮3\)

Mà \(8p+1>3\Rightarrow8p+1\)là hợp số

- Trường hợp 3: \(p\)chia 3 dư 2

Lúc này cũng coi \(p=3k+2\)

Có thể suy ra được rằng \(p=3k+2\Rightarrow3p-1=3\left(3k+2\right)-1=9k+6-1=9k+5\)

Khi đó, lại chia tiếp ra 2 trường hợp nữa:

\(k\)chia 2 dư 1 \(\Rightarrow9k+5⋮2\)

Mà vì \(9k+5>2\)nên \(9k+5=3p-1\)sẽ là hợp số, trái với đề bài.

\(k⋮2\Rightarrow p=\left(3k+2\right)⋮2\)

Để có thể thỏa mãn với đề bài, p chỉ có thể bằng 2 với \(k=0\)

(Thực ra, khi làm đến đây, mình mới thấy cái thiếu của đề bài vì khi \(p=2\Rightarrow3p-1=3.2-1=5\Rightarrow8p+1=8.2+1=17\); cả ba số 2; 5; 17 ta có được vào lúc này đều là số nguyên tố. Mặc dù thiếu như vậy nhưng lời giải ban đầu của mình cũng rất đáng để tham khảo)

Mong bạn hãy sửa lại đề bài nhé

Chúc bạn học tốt!

Khách vãng lai đã xóa
Kim Thị Lan Anh
Xem chi tiết
Đinh Nguyễn Anh Thư
Xem chi tiết
✦๖ۣۜAugųsť❦❄
7 tháng 5 2021 lúc 20:32

câu 2:

p là 1 số nguyên tố (p>3),

do p không chia hết cho 3 nên p có dạng 3k + 1 hoặc 3k + 2

nhưng do p +4 là số nguyên tố (3k+2+4=3k+6 \(⋮\)3) nên p không thể có dạng 3k + 2 vậy p có dạng 3k +1. Vậy p + 8 = 3k + 9 chia hết cho 3 nên nó là hợp số.

câu 3:

Nếu p= 2 => 8p - 1 = 16 - 1= 15 là hợp số (loại)

Nếu p = 3=> 8p - 1 =24 - 1 = 23 là số nguyên tố 8p + 1 = 25 là hợp số

Nếu p > 3 => p có dạng 3K+1 hoặc 3K+2 

Nếu p = 3K + 2 =>p = 24K + 16 - 1 = 24K + 15 thỏa mãn 3 và là hợp số (thỏa mãn điều kiện)

=> p = 3K + 1 => 8p + 1 = 24K +8 + 1 = 24K + 9 thỏa mãn 3 , là hợp số 

Khách vãng lai đã xóa
Nguyễn Đỗ Khánh Ly
7 tháng 5 2021 lúc 20:46

Giả sử p là 1 số nguyên tố > 3, do p không chia hết cho 3 nên p có dạng là

3k + 1 hoặc 3k + 2

ta có

p = 3k + 2 suy ra p + 4 = 3k + 2 + 4 = 3k + 6 = 3.(k+2)

vì 3 chia hết cho 3 nên 3.(k+2) chia hết cho 3 nên p +4 là hợp số  (1)

nếu p = 3k +1 suy ra p + 8 = 3k+1+8 =3k+9 =3.(k+3)

vì 3 chia hết cho 3 nên 3.(k+3) chia hết cho 3 nên p +8 là hợp số  (2)

từ (1) và (2) suy ra p và p+4 là SNT (p>3) thì p+8 là HS

Vậy .................

Khách vãng lai đã xóa
Dragon Ball
Xem chi tiết
Hụt Hẫng
Xem chi tiết
Nguyễn Trung Dũng
Xem chi tiết
kaneki_ken
11 tháng 11 2017 lúc 21:36

ta có 2p+2=p(p+1) vì p là số nguyên tố , p>3 => p lẻ =>p=1 \(⋮\)2=>2(p+1)\(⋮\)4 (1)

nếu p chia 3 dư 1 => p+2 \(⋮\)3 (vì p là số nguyên tố , p>3)

=> p chia 3 dư 2 => p+1 \(⋮\)3=>2(p+1)\(⋮\)3 (2)

từ (1),(2) => 2(p+1) \(⋮\)12

                 hap 2p+2 \(⋮\)12  

Hà Mai Khanh
Xem chi tiết
Lê Song Phương
23 tháng 6 2023 lúc 8:06

 Để ý rằng \(p^2-4=\left(p-2\right)\left(p+2\right)\), hơn nữa \(p-2< p+2\) nên để \(p^2-4\) là số nguyên tố thì \(p-2=1\) và \(p+2\) là số nguyên tố \(\Leftrightarrow p=3\).

 Thử lại, ta thấy rõ rằng \(3^2+4=13\) và \(3^2-4=5\) đều là các số nguyên tố. Vậy, \(p=3\)